— —— L L L] L L]
L

* GROPRICE §

‘1 2017IRI " CFSTI PRICE(S) $

Contract NAS 12-38 ' Hard copy (HC)

Microfiche (MF)

£ 853 July 65

INTERIM REPORT

SPACEBORNE MEMORY

ORGANIZATION

‘To NASA/ERC

HONEYWELL SYSTEMS & RESEARCH DIVISION
RIS €74 -7

Interim Report

L SPACEBORNE MEMORY ORGANIZATION

| HONEVYWELL Systems & Research Division

s

l‘ Printed in U.S.A. 12017IR! 15 December 1965

ACKNOWLEDGMENTS AND APPROVAL

HONEYWELL REPORT 12017FR1

. r)' i
Prepared by: Approved by: O Hu(;,g \f;/uulh/&ﬁ.

O. Hugo Schuck
Director of Research

. C. Gunderson

TN T WS - R L] TP W T

W. Hastings

00y

J. Prom

Honeywell Inc.
Systems and Research Division
Minneapolis, Minnesota

———— e - —— L W W T T u v

- i1 -

CONTENTS

SECTION I INTRODUCTION

SECTION II SUMMARY OF SPACE EXPLORATION COMPUTA-
TION REQUIREMENTS

Computation Descriptors
Conclusions

SECTION III A SURVEY OF ASSOCIATIVE MEMORY ORGANIZA -
TIONAL APPROACHES

Introduction

Basic Searches
Equality Search
Inequality Search
Maximum (Minimum) Search
Proximity Search
Intersection of Searches
Union of Searches

Processing Operations
Addition (X1 +S ...)
Field Addition (X1 + Y1...)
Summation (X1 + X2 ...)
Counting (X1 + 1...)
Shifting
Complementing (X1 ...)
Logical Sum -(Xi1 ...)
Logical Product (X1...)
Floating Point Add

Facilities for Storage and Processing of Results
Shift Capability
Logic to Determine if at LLeast One Match
Logic to Determine if Exactly One Match
Logic to Determine Exact Number of Matches
Word Select Ladder

Organization Approaches

Approach 1 - Minimum Associative Memory

Approach 2 - Associative Memory with Bit
Slice Writing

Approach 3 - Associative Memory with All-
Parallel Equality Search

Approach 4 - Local Logic - Ternary Output

Approach 5 - Intercommunicating Cells

12017 IR1

L . - [] L —"‘““'—"—————*‘w‘—*‘—““-‘*-_—**—“‘-‘

t]] []]]] []]
—— 0Ol INO DD WWr

WWW WWWWwWWwWwWwWww WwWwwwwwww
[}

SECTION 1V

SECTION V

- T D B B Y B T T T B Y e T Wl N o O UEw O weew

- iii -

CONTENTS

Summary of Organizational Approaches

Bibliography for Section III
Magnetic Associative Memories
Cyrogenic Associative Memories
Semiconductor Associative Memories
Associative Memory Systems
Associative Memory Algorithms
Applications of Associative Memories
Associative Processors

References for Section III

INVESTIGATION OF SPECIAL APPLICATIONS AND
APPROACHES

An Associative Memory for Incremental Computation
Some Considerations in the Organization of an Ultra-
Reliable Associative Memory

SUMMARY OF RESULTS AND WORK TO BE DONE

12017 IR1

- iv -

ILLUSTRATIONS

Functional Block Diagram
Approach 1 - Minimum Associative Memory
Transpolarized Memory With Two Dimensional Readout

Transpolarizer NDRO Readout

Approach 2 - Associative Memory With Bit Slice Writing
Approach 3 - Associative Memory With All-Parallel Equality
Search

Approach 4 - Associative Memory With Local Logic - Ternary
Output

Approach 5 - Associative Memory With Intercommunicating

Cells
Block Diagram of an Integrator for an Incremental Computer

Memory Arrangement for a Bit Slice Associative Memory Used
For Incremental Computation

Plugboard Programming Arrangement For a Bii Slice
Associative Memory Used For Incremental Computation

Memory Arrangement For a Word Slice Associative Memory
Used for Incremental Computation

12017 IR1

Page

3-2

3-117
3-26
3-217
3-31
3-44

3-56

3-68

4-3

4-6

4-9

4-11

T W uWe

TS W W s

1-1

SECTION 1
INTRODUCTION

This report contains the results of the first five months of effort on a study
aimed at@he investigation of the use of associative memories in unmanned
space vehicles in the 1975 to 1985 time period\ It is assumed that unmanned
planetary exploration will require computation of a type and extent not pre-
viously provided in aero-space vehicles. This is partially due to the fact that
the vehicle is operating in an unknown environment with a limited earth-

vehicle communications link.

Associative memories with their search capabilities have in the past been
proposed primarily for non-numerical tasks such as information retrieval.
However, associative memories capable of processing operations as well as
search operations can be applied effectively to a much wider class of prob-
lems. They are applicable to problems of the type requiring not only table
look-up operations, but also processing operations of the type where the
same operation is being carried out over a large set of operands. It is felt
that these capabilities justify the investigation of associative techniques for

use in a sophisticated on-board computing facility.

The study is divided into five tasks as shown in the diagram below:

TASK 1
Defimution of Space
Exploration Computation

Evaluation of Associative
Techniques for Space
Exploration Computations

TASK 3
Examination of New
Memory Organization
Approache s

TASK 5
Device
Recommendations

TASK 2
Survey of Associative

Memory Organ:zation

Approaches

12017 IR1

T — _—

e Y W L _ 2

‘YT W 2w

-——— ——— L T N W W W W

»

1-2

Work to date has been on the first three tasks of the study. Tasks 1 and 2 are
completed and Task 3 is partially completed.

The results of Task 1, the Definition of the Space Exploration Computation
Requirements, are presented in Appendix A. A summary of these results is
contained in Section II of the report. Four of the major computational func-
tions have been defined and 2 number of conclusions regarding fruitful areas
of application of associative techniques are given.

Task 2 was performed as two essentially independent subtasks. One was a
survey of associative memory organizational approaches, and the other was
a survey of devices suitable for use in associative memories. The organiza-
tional approach survey is included as Section III of the report. Definitions
concerning both the organization and capabilities of an associative memory
are given. Five basic organizational approaches along with a number of var-
iations are described in terms of their capabilities to perform search and
processing operations. The devices suitable for mechanization of each of
these approaches are discussed. The device survey subtask, is included as
Appendix B of this report. This appendix contains a description of all de-
vices with a memory capability felt to be suitable for use in future associative

memories.

In Task 3, the results of Task 1 were evaluated and studied to determine
promising areas of application and general capability requirements for as-
sociative memories. Five areas of applications have been singled out for
further investigation. One of these, the use of an associative memory for
incremental computations has been completed and is discussed in Section IV.
Also included in Section IV is a brief discussion of some considerations in

the organization of an ultra-reliable associative memory.

Section V contains a summary of the results obtained thus far and an outline
of the work to be completed on the remainder of the study program.

12017 IR1

T W O W U W W T e W U O wE ey - e

2-1

SECTION II
SUMMARY OF SPACE EXPLORATION COMPUTATION REQUIREMENTS

To evaluate the application of associative memories to future planetary ex-
ploration with unmanned vehicles, it was necessary to define the on-board
computation requirements. The time period of interest is from 1975 to 1985.
While specific requirements are largely unknown at this time, general re-

quirements were determined and potential problem areas were identified.

Details of this work are included as Appendix A. A summary of the require-

ments and a discussion of conclusions are contained within this section.

COMPUTATION DESCRIPTORS

The approach to defining computational requirements was to describe each in
terms of a set of computation descriptors. The aim is to determine the form
of the computation rather than the details. The attempt was to use computa-
tion descriptors which are at least one level higher than operations such as
equality search, addition, multiplication, etc. A listing is contained in
Tables 2-1 and 2-2.

Table 2-1
Functions Descriptors
A. Data Handling
1. Data Acquisition
a) Adaptive selection of scientific
instruments Simple decision making
b) Adaptive selection of perfor-
mance inputs Simple decision making
12017 IR1

- 2-2

Table 2-1 (Continued)

Functions

Descriptors

c) Adaptive sampling of scientific data

d) Adaptive sampling of performance
data

e) System status monitoring

f) Dynamics range adjustment

g) Conversion from analog to digital

Storage and Related Control Require-
ments

a) Data storage
b) Storage allocation

c) Data retrieval

Data Distribution

‘B. Processing of Scientific Data

1.

Data compression

a) Encoding methods
1) Amodulation
2) Debiasing

3) Interval suppression
4) Code substitution

b) Filtering methods
1) Statistical representation
a) Quantiles

Simultaneous arithmetic
Simultaneous comparisons

Simultaneous arithmetic
Simultaneous comparisons

Simultaneous arithmetic
Simultaneous comparisons

Simultaneous comparisons

Searching

Simple Decision Making

Matrix subtraction

Simultaneous comparisons
Simultaneous arithmetic

Simultaneous comparisons

Simultaneous comparisons

Simultaneous comparisons
Sequential arithmetic

12017 IR1

T W 2w T Wy e

B e el | - L

2-3

Table 2-1 (Continued)

Functions

Descriptors

2)

3)
4)

b) Direct computation of
moments

c¢) Direct Approximation of

the Probability Density
Function

Curve fitting
a) Interpolators

1~ IMAAT A ~vma oot~
19

) Llllcd.]. LCSL ToDLIVIL

c) Least squares

Correlation

Feature oriented techniques

On-board Decision Making

a) Composition analysis

b) Picture processing

1)

2)

Contrast comparisons

Operator techniques

c¢) Other situations

1)
2)

Allocation of Resources
Task Scheduling

Miscellaneous Data Processing

a) Side looking radar

Sum of Products

Simultaneous arithmetic

Polynomial evaluation
Simultaneous arithmetic

Simuitaneous arithmetic
Matrix inversion

Sum of Products
Matrix inversion

Sum of Products

Sum of Products

Sum of Products
Sequential arithmetic
Sequential comparisons

Simultaneous arithmetic
Simultaneous comparisons

Sum of Products

Simultaneous arithmetic
Sum of Products (4 x 10
multiplications/sec.)

6

12017 IR1

suorjenba [eonjuapt aaay],
puooas aad g0g 03 001

(1 xelle x¢)

puodas xad 90z 01 007

(Exejexe)
puodas xad 000 ‘0T ©3 0001

(93ex uonnzadaa saynutwW 1 03 G)
31040 aad 1BI2ADS ‘g X

dxd ‘9x9

suor)

-BAJDSQO JO ‘OU = J axaym ‘g X d
31040 gad [BIBAAS ‘g X ¢

sojnuIwW (1 0} ¢ AX2A3 pajeaday
paxmbaa ¢
e[NWJIOJ 0¢ =

sajnuiw 1 03 ¢ AxaAd pajeaday
JI9pJ0 yig jo srerwoukiod g

| Spuodas maj AxaAaa pajeaday
suorjenba ¢

(Tejuawaaou])
UOI}ENTRAS BINWJIO

(Tejuawraaduy)
uoryed I dy Nt X113

(Tejuawraaduy)
uorjedTidinu XtIjep

uorjrsodsuea] XTI}
uonIppy XIxjejNl

UOISJIBdAU] XIJ}BIN
uonedIdinN XTI3en

uoredIIdy N X113
uorjenteard e[nNWJIO

uonjenieAad [erwoudiod

uor}eadaju] [edTIaWINN

SjuaW W o))

Jo0ydraosa(q

SUO1}031J00
1Bud1S I3}2WOJ3[300Y ‘T

SUOTI}0aJJ00 [eudls odkn 1

Japue’]
JO 10q3U0)) pue uorjedAeN

X931 uewrey (e

sanbru
-yo9J uonewl}sy ajeis ‘g

sTeadolu]
Apog-om]J o1k1eUy (O
uorjerodeayxa
-uornyejodasiul aenqge], (9
poyisiN

uoneasajuy 10311 (®

suonyenduro)

XTJI}BJA UOT}ISUBRJL], 93818
pue Lxojoaler] aduaaajayg I

1Jeaoaoedg jo uoneSwmeN 'Y

uorjoun

2-2 91qel

SR muteh Sk dAuun @ otus Selih 0 Sk Sk .. Stk . Sl

12017 IR1

2-5

puodas aad g1
puodas aad 01
puodas aad g1 01 1

suorjenba 1eOTjUAPI-UOU OM],
puooas aad 00z 03 001

00¢ 031 001

suonenba [BOTIUSPT BUIN
puodas xad 000 ‘0T 03 0001

‘ba
90UaJISJITP JI3PJO Yig

sjonpoad Jo wing

UOT}eW 0]
-SUBJJ, 9}BUIPJIOO)D)

(Tejuawaaouy)
UOT}ENTBAS BINW.IO]

(TejusawaIouy)
uonyed Id} Nl XT3N

(Tejuawaaouy)
uorjeNnIeAa BINUWJIO.]

uonyesuadwo) £1111q€IS
uorne}

-ndwion 1eudtg Joxas
uonyendwod ndinQ
uonyeindw o) uoreSaeN
UOI}BW IO}

-SUBJ], UOT}BIDIIDOY

SaUlsS 0D UOoI}daII(]

sjuaWW o)

Joydraosa(g

uornoun g

(penuUnBUOD) -2 JIqeL

-

4
7!

[

St . ShaEm 0 OSSN SSh Smuet Gk anesh . Subms SuBE SESE . Gk . GG . SuEh SEN SENE SSER SnSh mal Smmm

W O W e e W

W T ...

-—— N - .

2-6.

CONCLUSIONS

The use of computation descriptors to describe the requirements was only

partially successful. It can be seen that a large portion of the computation had

to be described in terms of more basic descriptors than intended. However,

some general conclusions can be drawn:

1)

2)

3)

The most frequently used descriptor is the sum of products compu-
tation. This is particularly true when realizing that some of the
other descriptors, such as matrix multiplication and polynominal
evaluation, also involve a sum of products computation. The sum-
mation operation is somewhat difficult for conventional associative

memories. and should be given some attention.

The data handling function, particularly that of data acquisition, ap-
pears to have requirements which naturally fit the capabilities of an
associative memory. An associative controller would provide the de-
sired adaptive sampling capability as well as flexibility in scheduling

and controlling the sensors.

Data compression is probably one of the most pressing tasks of the
on-board computer system. While compression of pictures would
provide the most significant gain, compression techniques can be
applied to other data sets as well. In view of the importance of this
task, it might be feasible to consider the availability of a library of
encoding and filtering methods. For each data set under considera-
tion a number of currently preferred combinations of filters and
encoders could be applied. The separate results could then be evalu-
ated on the basis of the number of bits needed to represent the data
set. The list of preferred encoders and filters might then be modi-

fied to reflect the successes and failures.

12017 IR1

— —— u—— —-— —— T ey

T T W W

4)

5)

6)

2-1

The incremental computation required for navigation and control of
the lander vehicle represents a type of arithmetic to which associa-
tive memories are applicable. It is also significant that this compu-
tation is required for a relatively short period; thus it is desirable
that this task be performed by something other than special purpose

hardware.

In general the desirability of adaptivity in the computing facility is
evident. The computer should have freedom to alter its own pro-
cessing schedule. This would include saving data for later proces-
sing, changing priority of the various experiments to accomodate
the relative information rates, and modifying the various processing

techniques according to the work load.
The reliability requirements on the computing facility of a space

vehicle are severe, particularly if the facility is in any way central-

ized.

12017 IR1

T —— T W .

T T e g

—_— —— L 4 - T W TTua T

3-1

SECTION III
A SURVEY OF ASSOCIATIVE MEMORY ORGANIZATIONAL APPROACHES

INTRODUCTION

The associative memory concept was first described by Sladelin 1956. Since
then many papers have been written on the subject with terms such as content
addressable memory and search memory being used almost as frequently as
associative memory. Also, varying definitions have been used in describing
such memories. Therefore an appropriate starting place for this survey of

associative memory organizational approaches is in the area of definitions.

First an associative memory is defined as a device having the capabilities

of storing binary words and of carrying out a set of operations on these

words. A significant part of the definition is that the operations are performed
simultaneously over all words.

The term '

'cell” will be used to refer to the logic-storage device which has
as a minimum the capability of storing a single bit of information. It may
include, however, a logic performing capability that can vary from the
EXCLUSIVE-OR operation to that of a full adder. Thus an n word, m bit

per word, associative memory will contain an m x n array of cells.

Figure 3-1 indicates the basic parts of an associative memory and the in-
formation flow during search operations. In general terms, the search word
is applied through a mask register tothe memory array where a comparison
is performed simultaneously with each stored word. The results of the com-
parison are transmitted on a per word basis to the Results Register. Masking
of selected bits of the search word is handled through use of a mask register.
Words can also be masked out of a search by either assuring that a mismatch

will occur or by blocking the output from the masked word.

12017 IR1

ST W W

W U T TaEW e W .

3-2

OPERAND REGISTER
MASK REGISTER
RESULTS
1 —————— 4 STORE
CE1LL cszu. e
m
-
I
e | — OUTPUT
ARRAY OF CELLS |
I
I
I
L »

Figure 3-1. Functional Block Diagram

12017 IR1

.

T T T T O T Y ST e e e e T w—

T T W .

3-3

The terms bit slice and word slice are used to describe the read, write,
and processing modes of operation. Referring to the block diagram
(Figure 3-1), a word slice is simply a single m-bit word, while a bit
slice is a slice one bit wide in the vertical direction. The ith bit slice

therefore would contain the ith bit of each word in the memory.

The operations performed by an associative memory can be divided into
search operations and processing operations. The difference is that
processing operations in some way change the contents of the memory,
while the search operations do not.

A number of the basic search operations normally performed in an
associative memory are defined below. Searches performed as the
intersection or union of basic searches are also described. To simplify
the description of the operations, all numbers are assumed to be positive.

Negative numbers can be handled in most cases with little difficulty.

The algorithms for these searches are normally quite dependent on the
organizational approach and are therefore described in a later section.
In each case, performance of the search operation will identify a set of
words. The next step is to either readout the identified set, generate
the address of the identified set, or generate a count of the number of

words in the set.

BASIC SEARCHES

Equality Search

The equality search is the operation of finding all stored words which are

equal to the search word in all unmasked positions. Logically this opera-
tion can be defined as follows where X is a stored word and S is the search

word:

to

0

-

7 IR1

1
4

- W o — e - — —

L L L L L N . LB

X = S if and only if the following Boolean equation is
satisfied

or alternatively the equivalent equation

>B

(X.S. +X

. S.) =1
1 1 1 11

i

8

and
1 i

is satisfied where denote the logical sum and logical product

<
>8

1

fn

i

of m terms, respectively.

Inequality Search

The inequality search is that operation of finding those stored words X which
are greater-than or of finding those which are less-than the search word S.

The inequality search can be expressed logically as follows:

X>Sifandon1yifXd= lande=0

where the d' bit is the most significant bit in which X, # S,.

=0and S, =1

X< S if and only if Xd d

where the dth bit is defined as above.

Maximum (minimum) Search

This search operation is that of finding the stored word having the largest

(smallest) magnitude.

12017 IR1

| “4 __ 4 V — -

G W N = =.

Proximity Search

The proximity search is defined as the operation of finding the stored word
that comes closest to matching the search word in terms of the number of
matching bits. It is possible that such a search could be mechanized as a
basic operation; however in all the approaches to be described the proximity
search is performed by doing an equality search on each bit, count the number

of mismatches, and perform a minimum search on the contents of the counters.

Intersection of Searches

The intersection of two or more sets of words, each of which satisfies a

basic search, is simply that set of words common to all the basic sets. This
is equivalent to a logical AND of basic searches. The most straightforward
way of performing the intersection of searches is to use the results of the
first search as the input set to the next search. Assuming that the inter-
section of searches is performed in this manner, the composition of searches,
in which the order of performing the searches is important, will be included

in this category.

Two familiar searches which are normally performed as an intersection of

searches are described below.

Between Limits Search

This search can be performed as the intersection of two inequality searches.
Using a '"lower limit'" as the search word, a greater-than search is performed
first to identify the set of words greater than the lower limit. Then with the
upper limit serving as the search word, a less-than search is performed to
identify the set of words less than the upper limit. The intersection of these

two sets is the desired output set.

12017 IR1

Y R Y L _____J L L ___ & T W T

3-6

Next Larger (smaller) Search

This operation is to find that word in memory which is closest in magnitude

to the search word with the additional stipulation that it be greater-than (less-
than) the search word. This operation is performed by first using the inequality
search to find all words greater-than (less-than) the search word and then,
using that set as the input set, performing a minimum (maximum) search to

find the next larger (smaller) word.

Union of Searches

The union is that set of words satisfying one or more of a number of searches.
This is equivalent to a logic OR of basic 8earches.

PROCESSING OPERATIONS

A number of processing operations are now described. Recall that the purpose

of these operations is to alter all or part of the contents of the memory.

Addition (X1 + 5, X2 +S, ------ s Xn + S)

This operation results in the addition of a quantity S located in the operand
register to a set of stored quantities X, where each X is stored in a different
word of the memory. The result either replaces the stored quantity or is

stored in another field of each word involved in the operation.

12017 IR1

Tl T B N N T T W T O e T D e e

3-7

Field Addition (X1 + Yl’ X2 + YZ’ ------ , Xn + Yn)

This type of addition involves two quantities stored in the same word oi the
memory. The quantity X is to be added to the quantity Y in each word and
the result is to be written back to replace either X or Y or to be stored in a

third field.

Summation (X, + Xy + Xg + - = - - - - +X)

In this case it is desired to produce the summation of a set of quantities
X stored in separate words of the memory. The result may either be

written into one of the words or placed in an external register.

Counting (X1 + 1, X2 + 1, X3 +1, ~ - ===~ - , Xn + 1)

The desired capability is that of simultaneously incrementing (or decrementing)
a set of quantities stored in separate words of the memory. It can be seen

that this is actually a special case of the first type of add operation.
Shifting
This is simply the operation of simultaneously shifting a selected set of

quantities which are located in the same field of different words.

Complementing (X1 + Xy, Xy Xy, - - - - - - Xn-o X)

This operation is that of simultaneously replacing each quantity X by its

complement X.

12017 IR1

| - T IS T I T e T ST T T e e T e S S W

3-8

Logical Sum - (X1 U S, Xz v s, ------ Xn U S)

The logical sum is a bit-by-bit OR'ing of the contents S of the operand
register with the stored quantities X. The result is stored either in a

second field of each word of in place of X.

Logical Product (X1 n s, X2 ns ----- Xn n .s)

The logical product operation is a bit-by-bit AND of the contents S of the
operand register and the stored quantities X. The result is stored either

in a second field of each word or in place of X.

Floating Point Add

Floating point operations can also be performed in an associative memory
by using a combination search and processing operation. Since the
algorithm used is the same regardless of the organizational approach, a

portion of it is described here.

Normalizing a floating point quantity is one of the more difficult and time
consuming tasks required in floating point arithmetic. Assume a floating
point number made up of a 15 bit fraction F and an exponent C. Each

word also has a scratch pad portion which in this operation is used to store

the '"shift count'.

Cycle 1

Search for 8 leading zeros in F. In all words satisfying the search,
shift F eight positions to the left and write a 1 in the fourth bit
position (23) of the shift counter.

12017 IR1

3-9

Cycle 2

Search for 4 leading zeros in F. In those wcrds satisfying the
search, shift F four positions to the left and write a 1 in the third

bit position of the shift counter,.

Cycle 3

Search for two leading zeros in F. In all words satisfying the
search, shift F two positions to the left and write a 1 in the
second bit position of the shif
Cycle 4

Search for one leading zero in F. In all words satisfying the
search, shift F one position to the left and write a 1 in the
least significant position of the shift counter.

Cycle 5

Subtract the content of the shift counter from the exponent C.

- S T S T T S T T e sea

An associative memory which is capable of performing one or more of the
processing operations described above as well as the basic search operations

is commonly called an associative processor.

12017 IR1

T S W O | .

3-10

In this survey the basic method of categorizing associative memories is by
organizational approach. This is felt to be better than to survey by device
since the capability limitations of an associative memory depend primarily

on the method of organization.

The major differences in the organizational approaches to be described
are concerned with the capabilities of the cell, the writing capabilities,
and the external facitities provided on a per word basis. There are,
however, a number of variations, particularly in terms of the external

or peripheral facilities which have an identical effect on all organizational
approaches to be described. These variations and their effects on the
processing capabilities of the associative memory will be described in the

next section prior to the description of organizational approaches.

FACILITIES FOR STORAGE AND PROCESSING OF RESULTS

The Results Store (Figure 3-1) has been identified as the place where the
results of a search or arithmetic operation are stored and interpreted.

The facilities included in the Results Store can vary in many ways - the
storage capability may vary from a single bit to multiple bits of storage per
word; a shift (vertical in Figure 3-1) capability may or may not be in-
cluded; and special logic to determine such things as the number of 1's

ina register may be included. The effects of some of these trade-offs are
highly dependent on the organizational approach. Examples of these are the
number of bits of external storage per word, and the comparison or pro-
cessing logic associated with each word. There are several trade-offs

to be made in this area, however, in which the effect on the cababilities is the
same regardless of the organizational approach. Thus these variations can
be discussed independent of the various organizational approaches to be
described later.

12017 IR1

3-11

Shift Capability

If one of the registers in the Results Store has a shift capability (vertical
in Figure 3-1), interword searches can be performed. To illustrate the
need for such capabilities consider the situation where two words of the

associative memory are required to store the four fields A, B, C, and
D of an item.

OPERAND REGISTER RESULTS
* STORE
fwono 1 A B, |
ITEM 1
1wom 2 < D, —
A
WORD 3 2 B, ——
ITEM 2 C D
WORD 4 2 2 ——

Assume there is a requirement to perform an equality search on fields

A and D. This must be done by first searching over the first field in all
odd numbered words and then shifting the results down one in the results
store. The second half of the search, which is over the second field, is

restricted to those even numbered words paired with odd numbered words
satisfying the first search.

It can be seen that the capability of shifting either up or down will effec-
tively give each word two nearest neighbors. Additional shift capabilities
or interconnections of register stages can be provided to give each word
four nearest neighbors. The array of words in this case can be pictured

as a two dimensional array which will naturally fit some problems better

than the one dimensional organization.

The usual one dimensional array and the two dimensional array are
illustrated on the following page:

12017 IR1

LR B L L} . .

3-12
\s‘?—" RESULTS
¥ STORE
oer¥ <>
N
N~
N }J/
N N
L
| %
|
/@éﬁ °
\/
N
ONE DIMENSIONAL TWO DIMENSIONAL
ARRAY ARRAY

It should be kept in mind that there is no difference in the connectivity

of the words themselves but only in the Results Store.

Logic To Determine if at Least One Match

In order to carry out the maximum (minimum) search it is necessary to
know after the i'0 bit slice comparison (with a 1 (0) in the search register)
whether any of the words still being considered for maximum (minimum)
value has satisfied the search. This is needed since a decision must be
made regarding the set of words to be included in the i+1th bit slice com-

th

parison. If one or more words satisfied the i bit slice comparison then

that set should be the input set for the i+1th bit slice comparison. On the

12017 IR1

;
3
4
i

T T

T —

3-13

other hand if no words satisfied the ith comparison, the input set used
for the ith comparison should be retained for the i+1th comparison. Thus
the capability of determining if at least one match has occurred is

essential for the maximum (minimum) search.

Logic to Determine if Exactly One Match

The facility to determine if exactly one match exists is also useful for

the maximum (minimum) search. As the search proceeds from the most
significant end, if on the ith bit slice comparison only one word is found

to match the '""1'" (0) in the search register, then that word is the maximum
(minimum) value and the search can be stopped. This then will in some cases
allow a search to be terminated early, whereas without this facility the

search must continue through all bit slices.

Logic to Determine Exact Number of Matches

The facility for determining the exact number of matches resulting from
a search operation is useful for one of the processing operation described
in the previous section. The operation is addition where a summation of
many numbers in the associative memory is requiredz. This can be done
by searching for 1's in the least significant bit position of all words.

The number of 1's is then added into an external parallel accumulator.
The next step is to search for 1's in the second bit position of all words.
Again the number of 1's is determined and is added into the accumulator
in a position one place to theleft of the previous step. This procedure is
continued through the most significant bit of the set, at which time the

summation of all the numbers is contained in the accumulator.

There are a number of applications which can utilize such a facility.

One example is library-type information retrieval where it may be desired

12017 IR1

TN U T T W Wy e W e

3-14

to insert keywords until such a time that the number of items satisfying
the search is below some particular value. Another problem area where

such a facility is useful is in statisiical analysis.

Word Select Ladder

A word select ladder is that logic which allows rapid sequential selection
of 1's in the Results Store and thus words satisfying a search. This se -
quential selection is necessary if the words are to.be read out in a word
slice mode or if it is desired to generate an address for each word. In
the case where an address is desired, a two dimensional arrangement

of the Results Store will speed the process3. In this case the Results

Store is arranged as a rectangular array. The address of a 1 in the

array is generated by identifying the column and the row to which it belongs.

12017 IR1

L} —— L] L e - L] —'—

3-15

ORGANIZATION APPROACHES

The organizational approaches described below have been selected as being
representative of a larger number of possible approaches. It is assumed
that in each case, all the peripheral facilities described in the previous sec-
tion are included unless it is specifically pointed out that they are excluded.
Each of the basic approaches is allowed to have variations that effect either
the list of devices applicable to the approach, or its capabilities to perform
one or more of the processing operations. One such variation which has an
effect on the device selection is common to all approaches and is discussed
here. This is concerned with the reading operations. All the approaches
described are assumed to have both bit slice and word slice reading capa-
bilities. Bit slice reading in most approaches can be obtained as a special
case of a bit slice comparison. Word slice reading, however, may or may
not be included. The absence of word slice reading does not directly effect
the processing capabilities, but it does limit the overall effectiveness of an
associative memory on some applications. Devices that are otherwise suit-
able but lack the capability of word slice reading are identified in the discus-

sion of mechanization considerations for each approach.

Approach 1 - Minimum Associative Memory

Description

This approach is considered the minimum associative memory because it
requires no local logic. All operations are carried out in a bit slice mode
with logic completely external to the memory plane. Thus the memory

plane is simply an array of memory elements and may be very much like

—
[\V]
(o]
[y
-J
]
o
[

- - N TN T T W O OeEw T ey T Wy

3-16

a conventional random access memory depending on the peripheral hardware
provided. A block diagram of the Minimum Associative Memory is shown in
Figure 3-2. It can be noted that random access to a bit slice is provided by
decoding a bit address supplied by a controlling unit. Likewise a word address
decoder is provided to select a word for reading or writing through the input-
output register. An operand register and a mask register are provided with
their contents shifted serially to the External Logic in synchronism with the

bit slice readout of the memory plane for any of the search operations. The
temporary results which must be related from one bit slice to the next and

the final result of all search operations are stored in the Results Store. In

this approach, the final result will be converted to an address for use by the
controlling unit.

Capabilities

Equality Search -- The equality search is performed by providing the con-

tents of all stored words a bit slice at a time to the Compare Logic in syn-
chronism with the search word stored in the Operand Register. The Com-
pare Logic associated with each word must perform the EXCLUSIVE-OR
logic function between each stored bit and the corresponding bit of the

search word. This logic might take on a form as shown below:

COMPARE LOGIC RESULTS STORE
FROM OPERAND |
REGISTER |
4
o !s C |
< (—
2 ' S 1
% o~ l
[- 4
g <) T -lc 0
3
: |l —x— | |
3\ |
: |

12017 IR1

4

T T - B -
—_—— —-—— ——— L — L] . T [___J B L I L 4

OPERAND REGISTER

MASK REGISTER

ADDRESS

INPUT

SLICE SELECTOR
FOR PROCESSING

(WORD sLICP)

WORD
SLICE

SELECTOR
ADDRESS

WRITING

> v

INPUT REGISTER

v

Y e

WORD 1
WORD 2
[
|
i ADDRESS
ARRAY OF "j GENERATOR
CELLS
| }
| ADDRESS OF
| WORD
| SATISFYING
SEARCH
WORD n
OUTPUT REGISTER
‘ OuTPUT
OuTPUT (81T SLICE)
(WORD SLICE)

Figure 3-2. Approach 1 - Minimum Associative Memory

12017 IR1

TS T e

—_—— L - L | L L _ | T TEEE T W T T O En O war Sy W O wa e

3-18

Assume that initially all F/F's are set. Any mismatch between the search
word S and the stored word will cause the F/F to be cleared. Thus when the

search is completed, a F/F containing a 1 will correspond to a word equal to
the search word.

The time required to perform the equality search is equal to the number
of bits involved in the search times the time required to read a single
bit slice from the memory. The assumption is made that the operation
is limited by the speed of the memory plane rather than the Compare
Logic.

Inequality Search -- In this memory the inequality search must be performed

in the bit slice mode such as was described for the equality search., There
are two algorithms which can be employed-- one starts from the least signi-
ficant end of the word, and the other starts from the most significant end.
The algorithm starting with the most significant end is probably the best
choice, however, since the maximum (minimum) search (described next)
must proceed from the most significant end. Thus this algorithm is des-
cribed below. The algorithm starting from the least significant end is des-

cribed in Approach la, which is a variation of this approach,

The general description of this algorithm is taken from Reference 4,
Examine the most significant bit of the search word. If it is a 1, then all
words mismatching in that position are smaller and all those matching are
indeterminate. If the most significant bit is a 0, all words mismatching
are larger and thos matching are indeterminate. Repeat the above proced-
ure for successively less significant bits on those words that are still
indeterminate. When the operation is completed, the stored words will
have been separated into three sets - those larger than the search word

those smaller than the search word, and those equal to the search word

)

12017 IR1

T W T T W . T T e

3-19

It is important to point out that no additional logic is required on a per word
basis to carry out this operation. There is simply the requirement for a
decision to be made on the basis of the contents of the Results Store and the
contents of the current position of the search word. However an additional
bit of storage is required to store the results on those words on which a deci-
sion has been made. The logic and storage might be organized as shown
below:

COMPARE LOGIC RESULTS STORE

GATE FROM
CONTROL

(IF S=0)
FROM OPERAND

REGISTER

R — G S— S — w——

I_H
Ls
x|
FROM
MEMORY -
PLANE S
X

Assume that both A and B flip flops (F/F) are initially set. As in the Equality
search, any mismatch signal is used to clear the A F/F. The B F/F, on the
other hand, can be reset ohly by the mismatch condition of S=0, X =1,

Once a mismatch has occurred, the mismatch signals from subsequent bits
have no effect on either the A or B F/F's. When the operation is completed

the state of the two flip flops are interpreted as follows:

AB Interpretation

11 Equality, X = S

10 Will not occur

01 Inequality, X < S

00 Inequality, X > S
12017 IR1

T W - -

3-20

The time required to perform the inequality search in this approach is equal
to the number of bits involved in the search times the time required to read
a signal bit slice from the memory. Note that this is the same as the time
required to do the equality search since it can generally be assumed that the
limiting factor is the readout of the memory array rather than the external

operations.

Maximum (minimum) Search -- The maximum (minimum) search is the

operation that consists of finding the stored word having the largest (small-
est) magnitude. This search must proceed in a bit slice manner and must
start at the most significant end. It also has the somewhat unique character-
istic that there is a dependency between words. The results of each bit

slice comparison must be interpreted before the next step can proceed.

The operation is initiated by placing 1's (0's) in all positions of the oper-
and register and comparing in the most significant bit position. The follow-

ing action is required:

a) If a match condition exists for only one word, that word is the

maximum and the operation is terminated.

b) If a match condition exists for more than one word, all words
receiving mismatch signals are deleted from further consider-

ation and the operation is repeated for the next bit.

c) If no match condition exists, all words are retained and the

operation is repeated for the next bit.

The operation is ended when the match condition exists for a single word
or when all bits have been compared. In the latter case more than one

word may contain the maximum value.

It can be recognized that there is a requirement for two bits of external
storage per word for this operation. The set of words still under

3-21

consideration for maximum value at the start of each bit slice comparison
must be stored in two sets of F/F's. This is necessary in case the current

bit slice comparison results in no matches.

The logic and storage requirements are satisfied by the arrangement shown

below:

COMPARE LOGIC RESULTS STORE

GATEB TO A GATEATO B

FROM OPERAND
REGISTER
st

S

X
—"—ﬁ}rl

Prior to each bit slice comparison both the A and B F/F's contain 1's if

FROM MEMORY
PLANE

wi

the corresponding word is still in consideration for maximum value. If
the ith bit slice comparison produces a mismatch the A F/F will be
cleared. The next step depends on the number of 1's in the A register
(all A F/F's). If no1's exist, the "Gate B to A" signal is energized.
If at least one 1 exists in the A register, the "Gate A to B'" signal is
energized. In either case the A and B F/F's will be the same prior to

the comparison of the next bit slice.

The time required to perform a maximum (minimum) search is somewhat
longer than that needed to do the equality and inequality searches. This is
because the external processing and decision making operations are assumed

to be more time consuming than the bit slice readout operations.

Proximity Search -- The proximity search cannot be performed in this

associative memory.

12017 IR1

W U T OE T U EEw T

3-22

Intersection of Searches -- The intersection of searches can be conveniently

performed in this memory by simply using the results of one search as the

input set to the second.

Union of Searches -- Only a restricted type of union of searches can be handled.

The only way it can be done is to transfer the results of the first search to the
second F/F associated with each word, perform the second search using only
the first F/F, and then logically OR the contents of the two F/F's. The re-
striction is that only the first search of a sequence of searches is allowed to
use both F/F's.

Processing Operations -- No processing operations are possible in this organ-

izational approach since there is no capability for writing a bit slice.

Mechanization Considerations

Requirements on the Device -- The fact that the cell in this associative memory

contains no logic makes it possible to mechanize it with a wide variety of
memory devices. The memory device must be capable of a non-destructive
readout (NDRO) mode, however, since no bit write capability is provided for

re-writing after the bit slice has been read out for comparison purposes.
It can be noted in Figure 3-2 that reading of the memory device is required
in two directions so that both a bit slice and a word slice can be read from

the memory. Writing, however, occurs only by word slice,

Applicable Devices -- Many devices are capable of satisfying the require-

ments of this approach since these requirements are not very severe. Some
of these devices, however, have capabilities much greater than required
and would therefore not be competitive with the others in terms of size,
power consumption, or cost. Those that appear to match the requirements

most closely might be broadly classified as non-destructive readout

12017 IR1

3-23

magnetic devices although not all of these are readily applicable. Non-
destructive readout devices are required because the approach does not
specify a bit slice write capability and therefore anything that is read out

in the normal bit slice mode is lost if the readout is destructive. In this
approach the memory elements operate in the same manner as a conven-
tional coincident current or word arranged memory except for the additional
requirements of the interrogate circuits, sense lines, and sense amplifier
required to read out a bit slice.

Multi-Aperature Devices -- Biax cores, transfluxors, and other multi-

aperature devices provide a relatively simple NDRO mode of operation
and writing in memories employing these devices can be accomplished

in much the same way as in an ordinary core memory. The Biax ele-
ment has the important advantage of a very high NDRO readout speed
which is usually limited more by the electronics than by the element

itself. Thus the search speed of a Biax memory (100 nanoseconds per

bit or less) would be much greater than that of a memory employing any

of the other multi-aperature devices. Transfluxors and other non-
orthogonal multi-aperature devices, on the other hand, have the advantage
of somewhat lower costs and are more readily adaptable to thin film batch-

fabrication schemes.

Magnetic Cores -- Conventional ferrite cores can also be operated in an
NDRO mode. Two examples of memories employing this type of operation
are the flux-lok memory and those employing minor loop readout. The se
methods of operation however impose stricter tolerances on the operating
parameters than those required by the conventional DRO mode and are
therefore not commonly employed. The maximum interrogation rate

for a ferrite core memory operated in the NDRO mode is lower than that
of a Biax memory, but the cost is also much lower, especially fbr large
memories. It would also be extremely difficult to obtain the necessary
bi-directional readout capability with these NDRO readout methods.

12017 IR1

T L L2 L L

——— L _J L4 e L ———— — B J T T

3-24

Thin Magnetic Films -- Thin magnetic films of both the flat and cylindri-

cal types can be used in this type of memory. They offer potential advan-
tages of high speed, small size, reduced power consumption, and low
cost. Problem areas such as uniformity, creep, and aging still exist
but they are apparently being solved. Two-dimensional readout has
also been a problem, particularly in the cylindrical configuration, but
at least one solution to this problem has been proposed. The open flux
structure of the flat thin film results in a large de-magnetizing field.
This imposes a maximum value on the thickness to area ratio of the
film. As a result, a compromise must be made which limits the pack-
ing density and maximum sense line output voltage. The cylindrical
thin films, the most common of which are the plated wire elements,
are not subject to these problems because the circumferential easy
direction results in a closed-flux structure. Most of the future NDRO
thin film memories are expected to employ cylindrical thin films for

this reason.

Tunnel Diodes -- The use of tunnel diodes in memories of this type has

been suggested. Because of their extremely high switching speeds,
tunnel diodes offer potential speed advantages in memory as well as
logic applications. In this approach however, a serial search algorithm
is employed. As a result the search speed is dependent not only on a
switching speed of the storage element but also on the speed of the
auxiliary electronics. When a very high speed switching element such
as the tunnel diode is used in a memory of this type the external elec-
tronics may have the greatest effect on the switching speed. As a re-
sult tunnel diode memory may not be faster than a thin film memory
when this approach is employed. Tunnel diodes have several disad-
vaniages over magnetic elements. They consume more power, particularly
during standby operation; are volatile require addition circuit elements
for read-in and read-out; and are probably much less reliable because of
the large number of elements and interconnections required at each bit

location. For these reasons, except for very small memories, tunnel

12017 IR1

T L i L ~ L L L) L L L

3-25

diodes should more properly be considered in connection with associate

memories employing local logic and cell intercommunication.

Ferroelectrics -- In applications where memory speed is less impor-

tant than power consumption ferroelectric and ferroelectric elements
could be considered. These elements share with the magnetic elements
the advantages of NDRO readout, non-volatility, and simplified reading
and writing. Maximum readout speeds however are probably in the one
to ten microsecond region. They also appear to be adaptable to mass
fabrication techniques although considerable research and development

may be required before this goal can be obtained.

The transpolarizer, a ferroelectric device similar in operation to the
transfluxor, could bg used in this application. It consists of two or more
ferroelectric elements interconnected to form each storage cell. In

the present case, a total of three per cell are required and are connected
as indicated in Figure 3-3. This connection provides word slice write
capability along with NDRO bit slice and word slice read capability. The
lower element in each cell holds the information_and the two upper ele-
ments provide the non-destructive readout, one for each of the two read-
out directions. This circuit has not been tested but it appears to be a
reasonable solution to the two direction readout problem.

The basic circuit of the NDRO memory cell is shown in Figure 3-4. The
polarization of each ferromagnetic element is indicated for each part of
the write and read cycles. Note that if a "'0" is stored, the read pulses
does not affect the polarization of either element; whereas if a 1 is
stored, both elements switch and the second writes the 1 back into the
cell. The presence of a stored 1 is sensed by means of a resistor that
measures the driver current during the switching of an element.

12017 IR1

3-26

Rd. B Rd. B

[—
=

Rd.W2
f _I.'J 1 [

J S—

Rd./Wr. llld./Wr.

Figure 3-3. Transpolarized Memory With Two Dimensional
Readout

12017 IR1

2 i mdc)

-21

—B 78— -

= TLmJLmT.. =I = lm{mTv\

er NDRO Readout

WRITE "1
WRITE "0"

lmrﬂ@iu

Figure 3-4. Transpol

I T EINT T TEEE T e s e W e e e

3-28

Variations of Approach 1

There are a number of variations of Approach 1 which are obtained by deleting
one or more of the basic capabilities described previously. In all cases these
variations either make it possible to realize the memory with a device which
could not satisfy all the previous requirements, or they make a significant

change in the capabilities of the unit.

Approach la - Fixed Information Memory Element -- This variation involves

the use of a fixed information element. This change has no direct effect on
the associative operations that can be carried out; however, it allows the use
of a different set of elements. Of course the fact that the memory cannot be
written into does severely limit the applications but this will not be considered

at this time.

Any member of the class of read only elements described would be suitable
for this approach. For small size memories, semi-conductor diode coupling
elements would be preferable since simple low powered drive and sense cir-
cuits could then be employed. For larger memories inductively coupled ele-
ments with printed circuit drive and sense lines appear to be advantageous.
They are capable of providing very fast search rates, probably at least as
fast as 100 nanoseconds per bit, and at the same time are amenable to low
cost, mass production fabrication techniques. Recent improvements in

the E-core memory have made it very attractive for medium to large size
fixed memory applications. Some memories, such as the slug memory, are
much more easily modified than the others. Others read only elements des-

cribed in Appendix B might be used in special applications.

Approach 1b - External Storage for Single Bit Only -- An associative memory

required to carry out only the equality search or the inequality search over
all words of the memory could be mechanized with a single bit of external
storage per word. That this is possible in the case of the equality search

is obvious from the description in the previous section. However in the case

of the inequality search, the algorithm described below must be used.

12017 IR1

Tl T T O O e T e

3-29

This is also a bit slice algorithm but it starts at the least significant end of
the word rather than the most significant end. Also with only a single bit
of storage, only a single set of words can be identified rather than three
sets (those greater than, those equal-tq and those less-than the search
word). As in the algorithm described previously the set to be identified by
this algorithm can be one of the following four - those words greater-than,
those words greater-than-or-equal-to, those words less-than, or these
words less-than-or-equal-to the search word.

As an example, consider the steps of the procedure to find those words
greater than the search word. Initially the F/F's are set to 0. The compari-
son starts with the least significant bit and proceeds to the most significant

bit. The decisions at the jth word upon comparison of the ith bit are:

a) If they match do nothing.
th

b) If they mismatch and if the i~ bit of the search word is 0, set
the i F/F.

c) If they mismatch and if the ith bit of the search word is 1, reset
tre ;1 F/F.

When the processing is completed, all those words greater than the search
words will be identified by F/F's in the 1 state. .

The logic and storage appropriate for this operation is shown below. Note
that the only change required to do a less-than search is to initially set the
F/F and when the process is completed all F/F's in the reset condition will
correspond to words less than the search word. The greater-than-or-equal-
to and the less-than-or-equal-to searches are the same respectively as the

two above except the initial state of the F/F is changed.

12017 IR1

3-30

COMPARE LOGIC

RESULTS STORE

FROM OPERAND |

REGISTER |
—

s 3 |

{1 ‘l

|

FROM D_'_

MEMORY

PLANE | _ l

x £]

i

No other search or processing operations can be performed with this memory.

The devices applicable to this variation are the same as those described for the

basic approach.

Approach 2 - Associative Memory with Bit Slice Writing

Descrigtion

This approach is like Approach 1 in that it does not make use of local logic.
The significant difference between the two is that this memory has the
capability of writing a bit slice. This allows the writing-back of results

of searches. This is a necessary capability for the performance of pro-
cessing operations and it also allows the use of the memory plane for
storage of results of searches for use on future searches. A block diagram

of this organizational approach is shown in Figure 3-5,

The bit slice writing capability is seen to require a driver per word but

eliminates the need for address decoding. The information to be written

12017 IR1

W IS I W e L] T T S .

3-31

OPERAND REGISTER

MASK REGISTER

ADDRESS
FOR PROCESSING
INPUT i
(WORD SLICE) v
INPUT REG ISTER
WORD LXTERNAL RESULTS
SELECTORS & LOGIC STORE
WORD 1 j—
by WORD 2
INPUT | TO WORD
(BIT SLICE) —9 I —» SELECTORS
ARRAY OF
FROM CELLS = MISCELLANEOUS
RESULTS —P OUTPUTS
STORE |
|
I
|
WORD n -p-q
OUTPUT REGISTER v
OuUTPUT
(BIT SLICE)
OUTPUT
(WORD SLICE)
Figure 3-5. Approach 2 - Associative Memory With

Bit Slice Writing

12017 IR1

N TN T - . - T T L ____J - . T .

T @AWy - L _____

3-32

is placed in the Results Store, either as the result of a search operation or

by gating from the outside, and it is written into a selected bit slice by supply-
ing a path directly from each word-position of the Results Store to each word
driver. Writing of a word slice is accomplished by first performing a search
to locate a word position and then using the contents of the Results Store to
select the word driver for writing. The information to be written in this case
is furnished from the Input Register. Of course if the application required
writing by address a word address decoder such as was shown in Figure 3-2

could be included.

The reading capability of this approach includes both bit slice and word
slice readout. Bit slice reading is accomplished in the same manner as
described for Approach 1. Word slice reading is accomplished by perform-
ing a search to locate the word, gating the contents of the Results Store to
the Word Drivers, and thus transferring the contents of the selected word

to the output register.
Other outputs which might be desired from the Results Store, depending on
the application, are addresses of words satisfying a search and the number

of words satisfying a search.

The access to bit slices for bit slice processing is again accomplished by

decoding an address furnished by the Controlling Unit.

The External Logic has the capability of performing the Exclusive-OR
logic operation as was the case for Approach 1.

Capabilities

Eguality, Inequality, and Maximum (Minimum) Searches -- These searches

are performed in exactly the same way as described for Approach 1.

12017 IR1

- PP

3-33

Proximity Search -- The proximity search cannot be performed as a basic

operation but it can be performed as a combination of search and processing

operations. The procedure is as follows:

a) Perform a bit slice comparison to determine if a match or mis-

match exists in each bit position,

b) With a portion of each word used as a counter, count the number

of mismatches that occur in each word,

c) When all bits have been compared and counted, a minimum search
is performed on the counter to determine which word had the few-

est mismatches.

Intersection of Searches -- The intersection of searches is handled by sim-

ply using the results of one search as the input set to the next as was done

in Approach 1,

Union of Searches -- The union of searches can be handled in this approach

without the restrictions imposed in Approach 1, This is done by using a bit
slice of memory for the storage of the results of the first search of the se-
quence while the second is being carried out. The results of the second

search are then OR'ed with the first by simply writing them over the results
of the first search. This procedure can be continued for any number of

searches,

Field Addition (Xl + Yl’ X2 + Y2, X3 + Y3, ------ , Xn + Yn) -~ This
type of add involves the case in which each word of the memory contains
an X field and a Y field, It is desired to produce the sum Z = X + Y and

store it either in a third field of each word or in place of the X or Y .

quantity. This operation can be performed by successively re-writing the

12017 IR1

!

3-34

bits of X, Y, and the carry bit C into control bit positions. The assignment

of bit position in each word of the memory would be as shown below:

WORD 1 X] Y‘ CONTROL
BITS
X Y CONTROL
WORD 2 2 2 i
!
!

A total of seven control bits are required per word to carry out the operation.

Consider the addition operation X + Y + Z. The Boolean equation for the sum

and carry bits are:

Z. = X'Y'.C. +X''Y.C'. +X.Y'.C'. +XY.C.
i iTi7i iTiTi iTi7i 17171

C. =C.X. +CY. +X.Y.
1+ 1 171 171 171

These equations can be written in the form:

- ' ' '
z. [(Xi Y+ c'i)r(Xi HYLHC) (X Y+ C) (X Y Ci)]

(1) (2) (4)

(3)
SR Ec'i XL (Cy Y (X Y'i)] '
(7)

(5) (6)

The numbers below each term in the equations above correspond to a control
bit in the memory used to generate that term. For instance by storing the

quantity X, Yi’ and C'i successively in control bit 1, the term Xi +Y + C'i
is generated. Similarly, the other three terms in the Z equation are gener-

ated in control bits 2, 3, and 4. The AND function of the four terms of the

12017 IR1

T W

T Wy W T W

N ey T Wy W ey

3-35

Z equation is then generated by doing an equality on control bits 1, 2, 3, and

4 against 1111, This operation is effectively an OR function of the complements;
that is, if any of the four is a 0, a 1 will be set in that position of the Results
Register. The information in the Results Register at the end of this search

is Zi‘ The generation of Ci 1 is carried out in a comparable manner using
control bits 5, 6, and 7.

The step by step procedure for X + Y% Z is outlined below. At the end of
each cycle the carry C is left in the Results Register for use during the next
cycle. Thus prior to the first cycle, the Results Register must be cleared

to give an initial carry-in of 0.

Procedure for Add Cycle I;T{Z'ac(i): VI\Jg.itgé
1. Write Ci to control bits 2, 3 1
2. Complement
3. Write C} to control bits 1, 4, 5, 6 1
4. Read Yi 1
5. Write Yi to control bits 1, 3 1
6. Complement
7. Write Y'i to control bits 2, 4, 6, 7 1
8. Read Xi and write Xi to control bits 1, 2 1 1
9. Complement
10. Write X'i to control bits 3, 4, 5, 7 1
11, Search control bits 1, 2, 3, 4 to generate Zi 4
12. Write Zi (This can be stored in place of Xi 1
or Y; or in a third field) -: '
13. Search control bits 5, 6, 7 to generate Ci 1 3 L
Totals 9 7

12017 IR1

T Uy G WS OO W W e e - W Wy Wy W W W WS

3-36

The totals represent the number of reads and writes for a single bit add.
Note that it is possible to write the same information into multiple bit
slices simultaneously (step 3). This is possible since the information is
furnished by the word driver and the bit slice is selected by the bit
driver. This will necessitate the capability of energizing more than one

bit slice at a time.

Add;tlon (X + S, X + S Sttt X + S) -- This operation is per-

formed in thlS memory in the same manner as the previous type of
addition. Instead of reading the Y bits from the memory plane, they

are read from the search register. Thus the number of read operations

from the memory plane will be one less per cycle than in the previcus
case.

Counting -- Counting simultaneously in each word of the memory is
—

performed by the following algorithm. A single control bit in each word
is used to store the carry Ci and the field X is used to store the counter.
It is assumed that an initial carry, which is actually the identity of those

counters to be incremented, is located in the Results Store.

a. Write the contents of the Results Store in control bit 1,

0.

b. Search for Xi Ci' If a match exists write Xi
c. Search for)—(i C;. If a match exists write X, = 1 and Ciy ©

d. Repeat steps b and ¢ for successively more significant bits

of X until all have been processed.

It can be seen that four bit-slice reads (for the two searches) and 3 bit-slice

writes are required for each bit of the counter.

Shifting -- Shifting within each word can be performed only by reading and
B

re-writing each bit to be shifted. This requires bit slice reading and

writing and thus can be performed simultaneously for all words or for a

12017 IR1

-_— . - Wy W W

, _v - _ o -

3-37

selected subset of words. An unusual feature about this method of shifting
is that the time required to shift is independent of the amount of the shift
and is directly dependent of the number of bits involved in the shift.

The time required to perform the shifting on a single bit regardless of the

amount of the shift is 1 read time and 1 write time.

Complement -- The complement operation on a set of words is performed
by reading in a bit slice manner, complementing the contents of the

Results Store, and rewriting to the same bit slice.

ion is 1 read time and 1 write per bit,
assuming that the time required to complement the contents of the Results

Store is negligible.

Logic sum (X, US, X, US ------ » X U S) -- The logic sum of a

set of stored quantltles X and the contents of the operand register S is

performed in this memory by examining each bit of S in any order desired

and doing the following:

a. If the i bit of S = 1, write Z. =
i
b. If the ith bit of S = 0, perform an equality search in the ith bit
position
1) If a match signal is received, write Zi =0

2) If a mismatch signal is received, write Zi =
The time required for this algorithm depends on the operand S. If the

. m
operation is performed over m bits, the average time is 5 reads and

m write.

12017 IR1

N W T T W T Wy e ey Py Wy W e e ey Wy e e

3-38

Logic product (Xi ns, Xy NS, - ----- , Xn N S) -- The logic products of

a set of stored quantities X and the contents of the operand register S is

performed by examining each bit of S in any order desired and doing the
following:

a. If the i'" bit of S = 0, write z =0
th th

b. If thei = bit of S=1, perform an equality search in the i~ bit
position
1) If a match signal is received, write Zi =1
2) If a mismatch signal is received, write Zi =0
The time for this operation is the same as for the logical sum.
Mechanization Considerations
Requirements on the Device -- The requirements on the device to mechanize

this approach are quite similar to those of Approach 1. In fact the only
difference is the additional requirement to be able to write a bit slice. The
inclusion of a bit slice writing capability, however, allows the use of a
destructive readout (DRO) memory element. An additional incentive to
considering DRO devices is that their write speed is generally faster than
that of an NDRO device. If the application is heavy on processing, the
write speed is vitally important since the number of writes is nearly as
great as the number of reads. However, other consideration such as power
still make an NDRO device advantageous.

Applicable Devices -- The requirements of this approach permit all of the

elements described under Approach 1 to be used here as well. Because of

the additional required bit slice write capability those elements which

require large word-write currents may not be acceptable for large memories.

12017 IR1

T T W o L] T .y W Wy e B O T W

3-39

Additional elements which could not be considered in Approach 1 but which
can be used in Approach 2 include ferrite and metal cores operated in the
DRO mode. These devices offer the advantage of extremely low cost
particularly when very large memories are under consideration. The
ferrite sheet (or monolithic ferrite) memory could also be used in this
approach. Since this type of memory is made by a batch fabrication process
it should be less expensive than conventional core memories once produc-
tion problems have been solved. It is also expected to be somewhat faster

and to require less power than the conventional types.

Variations of Approach 2

The capabilities of this approach for arithmetic operations can be improved
appreciably by increasing the external logic facilities. The basic approach
described above uses a minimum amount of external logic (only the Exclusive-
OR function). The logic can be increased in any number of steps until the
point is reached where a complete serial adder exists for each word of
memory. While it is realized that there are many perfectly reasonable
part-way points, only the serial adder per word variation will be described.
(Approach 2a).

Two other variations are also described. Approach 2b is simply Approach 2
with only a single bit of external storage per word. Approach 2c is a
relatively severe variation; the random access to a bit slice capability is

replaced by a cyclic access capability.

Approach 2a - Serial Adder per Word -- In this approach, the External Logic

has been expanded to the extent that a complete serial adder is provided for
each word. This change, provides increased arithmetic capabilities as
compared to Approach 2. With the carry bit stored in the serial adder or in
the Results Store a single bit add of any of the types discussed can be per-
formed by the following algorithm:

12017 IR1

T T U T e W W O WEwTTeUeE W e www

3-40

a) Read and Store Xi

b) Read Yi (either from memory or from the operand register) and

generate Zi and Ci +1

c) Write Zi

Assuming the memory reading and writing operations are limiting, a single
bit add can be done in 2 read times and 1 write time.

The serial adder per word approach has an additional potential advantage.
If the requirement for performing arithmetic on a small set of operands
{adding two numbers, for instance) occurs, these numbers can be stored
in the memory in the bit slice direction and the set of serial adders could
be connected to act as a parallel adder as in a conventional computer. In
fact this approach used in this manner is not much different than a con-
ventional random access memory along with a conventional parallel

arithmetic unit.

The mechanization requirements for this approach are much like those for
Approach 2. The only significant difference is that the reduction in the
number of write operations relieves to some extent the need for a high

speed write.

Approach 2b - External Storage for Single Bit Only -- The effect of restricting

external storage to a single bit per word was previously discussed as
Approach 1b. It was found to limit rather severely the capabilities of
Approach 1. The effect here is somewhat different because Approach 2 has
a bit slice writing capability. Therefore a bit slice within the memory plane
can serve as the second bit of storage required on a per word basis for
operations such as the maximum (minimum) search. It can also serve to
store the identity of a selected subset of words if it is desired that not all

words be included in a given search.

12017 IR1

3-41

As an example of how this capability can be used, consider the maximum
search. Recall that the set of words under consideration for maximum
value prior to each bit slice comparison must be retained until after the
comparison in case none of the words satisfy the search. The algorithm
would have the following steps:

a. Store the present contents of the Results Register in control bit Cl‘

b. Perform a bit slice comparison.
1) If one word satisfies the search, it is the maximum value

2) If more than one word satisfy the search, return to step 1.

3) If no words satisfy the search, read C1 and then return to

step 1.

It can be recognized that this procedure will be more time consuming than
if two bits of storage were available external to the memory array since
writing into the memory plane is undoubtedly slower than the transfer

between two external registers.

Approach 2¢ - Cyclic Access -- This approach to an associative memory

s based primarily on the capabilities of a class of devices. There are devices
which are cyclic rather than random access. Such a device can be used to
realize an associative memory fitting onto this category since it will have a

bit slice writing capability. However there are a number of organizational

descriptor differences. These are discussed below:

a. There is no capability for doing word slice writing
b. Word slice reading is not possible

c. Access to bit slices is cyclic rather than random

TN U Wy TS E oww W L] L LB |

3-42

~he inability to do either reading or writ.ng in the wcrd slice dir ‘ction does
not effect the processing capabilities but does limit t e practical areas of
application. The inability to access bit slices randor.ily however does have
an appreciable effect on the processing caipabilities. Probably tke greatest
-estriction is that all operations on ;. giv:n set of wo:'ds must be performed
'n the same)it sequence - starting ¢t the most signif cant end, o - starting
..t the least : ignificant ennd. While tle equality searcn and the ine quality
search can k2 carried out starting at eithar end, the naximum (niinimum)
search and tie arithmetic operations have conflicting requiremen.s. The
maximum (n.inimum) search must proceed from the riost significant end,
while arithmetic operations must proceea from the least significant end.
Arithmetic operations in general can be performed o ly if a complete

serial adder per word is furnished. Even then the field add would not be

possible unless they are interlaced rather than separated as shown below:

worD; | v | x Y

The lack of random access to bit slices rules out the use of control bits
within the memory. Thus one of the muain advantages of the bit slice writing
capability is lost.

Other processing operations such us counting and shifting uare equally
difficult in this approach. Shifting, for instance, would require a complete
cycle for each bit of shift.

Any of the cyclic access media could be used in this approach. Magnetic
drums and magnetic discs offer the advantage of extremely low cost for
very large memory sizes. They also employ non-destructive readout means
and, even more important, are non-volatile thereby insuring the inte'grity of
the memory if power should fail. The reliability problems of a rotating

medium have led to the replacement of these types of memories by acoustic

12017 IR1

T W T W B B O O S s oswy e W T W way Uy Sy N

»

3-43

delay lines, either of the nickel wire or glass types for many applications.
The replacement process has been accelerated as the costs of these later
types of mernories (on a per bit basis) decrease. The glass delay lines
,constitute the only type of memory in which a search operation can proceed
at a bit rate as high as 25 to 50 million bits per second. All of these delay
lines are volatile devices and all require continuous circulation of the in-
formation. These are serious limitations for many memory applications.
Research has been done on a type of magnetostrictive delay line called the
strain wave memory which is not volatile and employs static storage. In
this case the acoustic wave does not carry information and instead is used

to reduce the coercive force of a magnetic film, which is plated on the wire,

3T emn Tle-n e ATTIT
14111, A veill LVUI\O

such that an applied field can then cnange the state of
operation can be achieved with this type of memory. Another non-volatile
element in this category is the domain wall motion magnetic shift register

which is attractive for medium speed memories with long bit length.

Semiconductor shift registers, particularly of the integrated circuit form,
can also be used in this approach. The fastest of these would be capable of
very high search rates of at least from 10 to 20 million bits per second, but
power consumption would be prohibitive for very large memories. Tunnel
diode shift registers might also be used in a similar manner, and in this
case the speed would undoubtly be limited only by the external bit slice

logic. Shift speeds of 100 megabits per second or greater should be possible.

Approach 3 - Associative Memory with All-Parallel Equality Search

Description
B

This is the first organizational approach to utilize local logic to perform
the search operations. The block diagram for this approach is shown in
Figure 3-6. The most significant difference between this block diagram

and those of the bit slice approaches discussed previously is that in this

12017 IR1

[

‘ T U e W W
S T WU T Ty

3-44

INPUT
(WORD SLICE)]
INPUT AND OPERAND REGISTER
MASK REGISTER
WORD EGIST RESULTS
SELEC TORS L STORE
_ﬁl WORD 1
—D‘ WORD 2
INPUT | OUTPUT
(BIT SLICE) I > 817 SLICE)
ARRAY OF
FROM CELLS TO WORD
RESULTS 4 ® SELECTORS
STORE - |
' MISCELLANEOUS
| OUTPUTS
WORD n

OUTPUT REGISTER

v

OuUTPUT
(WORD SLICE)

Figure 3-6. Approach 3 - Associative Memory With

All-Parallel Equality Search

12017 IR1

—-—— - W L _— W W

T U T U e U O Ew e e - .

3-45

case the operand is furnished to the memory rather than the contents of the
memory being read out to the External Logic. In fact the External Logic
block has been deleted from the diagram.

The cell in this memory has in addition to the capability of storing a single
bit of information, the capability of performing a simple logic function.
The logic included in the cell, is the EXCLUSIVE-OR function; that is,

the cell has the capability of performing the EXCLUSIVE-OR function
between the stored bit and a bit furnished from the operand register.

The output from each cell is a match-mismatch signal.

In order that local logic provide any advantages over external logic it is
necessary that the signals be of such a form that an all-parallel equality
search can be performed. If the cell is mechanized with magnetic devices
the desired form is that the match signal be a null signal. Then the sense
lead performs an OR function of mismatch signals as all bits are interrogated
simultaneously. While for other types of mechanization the desired form of
the signal may be different, a null match signal will be assumed in the dis-

cussion which follows.

Both bit slice and word slice writing capabilities are assumed for this

approach. Bit slice and word slice reading are also included.

Capabilities

Equality Search -- The main advantage of local logic of the type present in

this approach is the increased speed in performing an equality search. Since
the match condition in each cell generates a null signal and the mismatch
condition generates a non-null signal, an all-parallel approach is feasible,

A mismatch condition in any one cell will produce the desired word mismatch

12017 IR1

—-—— -———— — ——— —_— 4 A - Wy W S T N TUEY W T e S e T

3-46

signal. A multiplicity of mismatch conditions in a given word will simply
produce a larger mismatch signal. Note that if the match signal was not a
null signal but simply opposite in polarity compared to the mismatch
signal, an all parallel search would not be possible since match and mis-

match signals would cancel each other out.

Inequality Search -- The all-parallel equality search capability allows the

use of a faster algorithm4 for the inequality search than was possible in
previous approaches. The number of cycles required for this algorithm is
equal to the number of 1's or the number of 0's in the search word depending
on whether a greater-than or less-than search is being performed. The

>dure for a greater-than (less-than) search is as follows:

a. Convert the least significant 0 (1) of the search word to a 1 (0).

b. Masking out all bits of lesser significance than the converted bit,

perform an equality search.
c. The words satisfying the search are members of the set SG(SL).

d. Repeat steps 1 through 3 until all the 0's (1's) in the search word

have been converted.

The union of all words satisfying these searches is the set of words greater

than (less than) the search word.

An example of the alterations made to the search word in this procedure is

given below

original 1101001
first search 110101X
second search 1 1 01 1 XX
third search 11 XXXXX
12017 IR1

ATEE 42N W L4 - Wy WY Ty T WS T -

3-47

Note that a muximum of two stored words can satisfy the first search -
110101 0andl1 10101 1. Bothare greater than the original
search word. The second search may locate as many as four additional
words satisfying the search -1 1 01100, 11011 (&1, 110110,

and1 1 01 1 1 1. Ingeneral each search may locate 2 stored words

where £ is equal to the number of masked out bits.

The organization of the Results Store facilities to mechanize this algorithm

is shown below:

CLEAR SIGNAL TRANSFER SIGNAL
MISMATCH
SIGNAL FROM — S 1] S 1 —
j WORD
FFA FFB
c 0 —PiC 0}—

After each search, the B F/F's will be set if the A F/F contains a 1. The
A F/F's are then all cleared in preparation for the next cycle. At the end
of the search (all 0's have been converted to 1's) those B F/F's which are

set correspond to words greater than (less than) the search word.

Maximum (minimum) Search -- This search is inherently a serial-by-bit

operation and the all-parallel equality search does not provide any speed
advantage over strictly bit slice searching. However there is an advantage
in terms of the number of external storage locations required, This advantage

is described in Approach 3b.

Proximity Search -- Although the proximity search is done by the same

procedure described for Approach 2, the time required to perform it is

less than that of Approach 2 due to an improvement in the counting operation.

12017 IR1

" _— —— ' — A - . - L] /

3-48

Intersection and Union of Searches -- These searches are performed in

the same way as described in Approach 2.

Field Addition (X1 + Yl’ X2 + Y2, ------ , Xn + Yn) -- The all-parallel
equality search capability can be used to good advantage in performing the
field add operation. The field add was previously defire d as the operation
of adding quantities X and Y stored in each word of the memory to obtain a
set of sums Z = X + Y. The sum Z will be stored in place of the quantity

Y since this would be the most frequently used type of field add. Another

type, in which the sum Z is stored in a third field, can be performed also
but it requires more time.

The algorithm to be described is due to Fuller (4) and uses a bit of the
memory to store the carry bit, C. A truth table for this operation shows
those combinations of Xi Yi Ci which must be detected. Since the location
of Y. is used to store the sum bit Zi and since the next carry Ci + 1 replaces
the present carry Ci’ the table can be presented as follows:

Present State Next State
X Y; G %2 G

1. 000 000

2. 001 010

3. 010 010

4. 011 001

5. 100 110

6. 101 101

7. 110 101

8. 111 111

12017 IR1

——— ——— ——— ——— ' L - Wy Tu

3-49

It can be noted that only input combinations 2, 4, 5, and 7 necessitate changes.
It can also be noted that present state 4 generates a next state which is the
same as present state 2, and present state 5 generates a next state which is
the same as present state 7. Thus in order to prevent the occurance of
errors, input combination 2 must be processed before 4, and input combina-

tion 7 must be processed before 5.

If C is initially set to 0 and with the operation proceeding from least significant

bit to most significant bit, the steps required for each bit of Z are as follows:

a. Search for Xi =0, Yi = 0, and Ci =1, Write Zi =1 and Ci+1 =0
in words satisfying the search.

b. Search for Xi =0, Yi =1, and Ci = 1. Write Zi = 0 in words
satisfying the search.

c. Search for Xi =1, Yi =1, and Ci = 0. Write Zi = 0 and Ci =1
in words satisfying the search.

d. Search for Xi =1, Yi = 0, and Ci = 0. Write Zi =1 in words

satisfying the search.

In summary this algorithm requires four searches and six write operations
per bit of addition.

Addition (Xi + S, X2 +S5 ------ Xn + S) -- The centralized add operation

is carried out in a manner similar to that described for the field add. However

in this case the quantity S is in the operand register rather than in the memory.
Thus the searches are performed only over X and C, the particular combina-
tions of the interest depending on whether Si isal or a 0. The operation
requires two searches and three write operation per bit if Zi replaces Xi’

If Zi is stored in a second field of each word the number of writes is the

same as above but the number of searches is 2 or 3 depending on whether

Yi is 0 or 1, respectively.

12017 IR1

) T T W
—— L ' —— —— _— -

W T A W W W e e

3-50

Counting -- Counting in this associative memory is performed by using the
same algorithm described for Approach 2. The all-parallel equality search

allows the count to be made with two searches and 3 write operations per bit
of count,

Other Processing Operation -- Shifting, complementing, and logic operations
are performed in this associative memory in the same manner as described
for Approach 2.

Mechanization Considerations

Requirements -- The cell used in this associative memory requires not only
a storage function but also a logic function. Thus the device to be used in
mechanizing the cell must provide both these functions. The fact that the
stored bit is used internally (to the cell) in a logic operation means that the
storage device must have a non-destructive readout (NDRO) capability and
must be compatable with the logic performing elements.

Applicable Devices

Plated Wire -- One device suitable for this approach is the plated
wire element, which is described in detail in Appendix A. A cell

made up of three plated wire elements can provide the capability of
storing a single bit and of performing the EXCLUSIVE-OR logic
function between the stored bit and a bit in the Operand Register.

12017 IR1

T W W e e

When interrogated the plated wire element produces outputs of the follow-

form:
I~ 1
STORED 1 %
|
| |
STORED 0 —'\j—-n_
| | :
|
' |
INTERROGATE CURRENT | :
|
|
|

Assuming that only the first polarity generated is recognized, the out-
put produced when interrogating a stored 1 will be called a positive signal

and that produced by a stored 0 a negative signal.

An associative memory cell is made up of three basic elements in the
following configuration:

S= 0 S=)
s o e T
\% 1 N2 PLATED
\ SENSE WIRE
— —— _

INTERROGATE WIRES

The notation within the cell indicates the quantity stored at each of the

three storage elements.

12017 IR1

3-52

Interrogation of the cell will result in the simultaneous interrogation of

two of the three storage elements depending on the state of S.

This cell uses signal cancellation techniques to obtain the desired output
which includes two possible signals - a null signal to indicate the match
condition, and a positive signal for the mismatch condition. These are

illustrated below:

X=0,Y=0 no signal
X=0,Y=1 positive signal
X=1,Y=0 positive signal
X=1,Y=1 no signal

This cell has the disadvantage that each bit must be stored in two loca-
tions. Thus bit slice writing requires two write cycles instead of one.
A method of overcoming this disadvantage is described in Approach 4.

Integrated Circuits -- Integrated circuit flip-flops and logic elements

can be used to provide the storage and logic requirements of this
approach. For small memories this type of mechanization is feasible
and would provide higher operating speeds than those attainable with
magnetic elements. For large memories, line capacity limits the
speed and the power consumption becomes impractically large. Field
effect transistor circuits appear to be optimum for medium size

(10, 000 words), moderate speed memories while bipolar transistor
circuits are better for small size (1000 words) high speed applications.
It will undoubtedly be possible to place several bits (up to 10 or 20) on
each chip thereby relieving some of the packaging and interconnection
problems.

The cell, in this case, would consist of a transistor flip-flop with read-
in logic and gated NDRO read-out plus an EXCLUSIVE-OR circuit that
grounds the output line whenever the inputs are not equal. All of the

EXCLUSIVE-OR circuits for a given word can then be connected

12017 IR1

3-53

together and the output will be a: ground potential if any of the bit pairs
mismatch and will be at the higl.er potential only if all bit pairs match.

The integrated circuit cell, of course, is volatile, but it may be possi-
ble to alleviate this disadvantag:. A ferroelectric storage element
might be deposited on the integrated circuit chip and a circu:t could

be devised to automatically transfer the flip-flop contents into the
ferroelectric capacitor whenever the power went off and back into

the flip-flop as soon as power was restored. Ferroelectric capacitors
are better than magnetic cores for this application since they can be
driven and sensed by very simple circuits. It would not be desirable
to leave the ferroelectric element in the circuit because of its low

switching speed.
The cryotron is also suitable for very large memories of this type.

Some of the advantages and disadvantages as well as the problems
involved are discussed under Approach 4.

Variations of Approach 3

Approach 3a -- Approach 3a is simply Approach 3 without the bit slice

- o i y _

writing capability. The main effect of this change is that it eliminates the
capability of performing processing operations. These changes are noted
in Table 3-1.

Approach 3b -- This variation of Approach 3 is obtained by reducing the

external storage to a single bit per word. Such a change in this approach
has less effect on the capabilities than in any of the previous approaches.
The equality search and the processing operations are not effected at all

and alternate schemes are available for the inequality and maximum

(minimum) searches.

12017 IR1

3-54

The inequality can be done by the same algorithm described for Approach 3
except that the partial results obtainad aiter each equality search must be
stored in a control bit of the memory. Another alternative is to use the
same algorithm as described for Approach la. While the writing of results
to the memory plane is not required in this algorithm, the number of
searches is .ncreased since a single bit search is required for each bit in
the search field. The choice of algorithms depends on the write speed of

the element.

The maximum (minimum) search is performed in this approach by using

the all-parallel equality search to full advantage. The algorithm proceeds
in a bit slice manner from the mosi significant bit to the least significant
bit, but each successive search includes the next bit in addition to all the
previous ones. This the first search will be over only the most significant
bit, the second will be over the two most significant bits, the third over the
three most significant, etc. The first time a bit position is included in a
search, a 1(0) is contained in that position of the search register. However,
if no words satisfy the search, the bit is changed to a 0(1) for all subsequent
searches. This algorithm has the advantage that the words still in compe -
tition for maximum (minimum) value do not have to be remembered from

one step to the next. Thus only a single bit of external storage is required.

Approach 4 - Local Logic - Ternary Output

Description

The logic function performed in the cell in this approach is slightly more
complex than that of Approach 3. Sufficient logic must be provided in this
case to separate the four possible combinations of two bits into three sets -

thus a ternary output signal is required. This ternary output signal from

the cell is desired for both the inequality search and for arithmetic operations.

12017 IR1

T —_ T T T W e

R J A A T T I T o T e T

3-55

The form of the ternary output signal will depend to a great extent on the

mechanization of the cell.

Although a number of devices can be used to

mechanize such a cell, the signal assignment used here is aimed at the

use of a magnetic device.

table below:

The signal assignments are indicated in the

Input Outpat From Cell
Combinations Equality Search Inequality Search Add Operation
00 no signal no signal negative signal
01 positive signal positive signal no signal
10 positive signal negative signal no signal
11 no signal no signal positive signal

An additional requirement on this cell is that of performing a logic function
on two bits stored within the memory. This is in contrast to the normal
situation where one bit is stored in the cell and the other is furnished from
the operand register. This requirement, which is useful for the field add
operation, can be fulfilled either by providing for the storage of two bits
within each cell or by allowing pairs of cells, each with a single bit of

storage, to interact with each other.

To provide this variety of requirements a variable function cell is proposed,
wherein the output of the cell varies depending on the operation being

performed.
The block diagram of this approach is shown in Figure 3-7. It can be noted

that bit slice and word slice modes are included for both the reading and

writing operations.

12017 IR1

3-56

INPUT
(WORD SLICE) 1
INPUT AND OPERAND REGISTER
MASK REGISTER
WORD EGISTE RESULTS
SELEC TORS i STORE
4 WORD 1 _.4
-D! WORD 2
INPUT i OuUTPUT
(BIT SLICE) -9 I P ®IT SLICE)
ARRAY OF
FROM CELLS TO WORD
RESULTS «uﬁ > SELECTORS
STORE . |
' MISCELLANEOUS
| OUTPUTS
WORD n

OUTPUT REGISTER

v

OurtPUT
(WORD SLICE)

Figure 3-7. Approach 4 - Associative Memory With
Local Logic - Ternary Output

12017 IR1

Ty

T a—_— ——_—

3-57

Capabilities

Equality Search -- The cell specifications indicated that the outputs of the

cell for the equality search operation will provide the null match signal and
a positive mismatch signal. Thus an all-parallel equality search as described
in Approach 3 is possible.

Inequality Search -- The output signal defined for the inequality search is a

ternary signal which not only indicates the match - mismatch condition but
also identifies the type of mismatch that has occurred. This allows a faster

inequality search than was possible using external logic.

The algorithm proposed for use here is the same as previously described for
Approach 1. The procedure is started by comparing the search word to
stored words in the most significant bit position and proceeding in a bit slice
mode. For a given word, when the first mismatch signal occurs, that word
can be classified as less than or greater than the search word. If the
assignment of signals is as defined above, a positive signal will indicate

less than, and a negative signal will indicate the greater than condition.
When the processing has proceeded through all bit slices, all words will
have been separated into three sets - those less than, those greater than,
and those equal to the search word. |

With all the logic, needed to make the above decision, in the cell, no word
to word synchronization is required as was the case with the external logic
approaches. Because of this it is anticipated that the rate of processing of
bit slices could be considerably faster in this approach than in previous
approaches using external logic.

An additional speedup can be obtained by making a slight alteration in the

algorithm, The presence of a null match signal allows the processing to
be carried out by sequences of 1's and 0's rather than by a strictly bit slice

12017 IR1

hc RN

T E— T —" waes W .

3-58

mode. For example if the searchwordis 0 01 1 1 0 1 1, a total of four
search cycles are required rather than eight as in bit slice processing. The
first two 0's can be searched simultaneously, then the three 1's can be
searched simultaneously, then the next 0, and finally the last two 1's making
a total of four searches.

Other Search Operation -- The maximum (minimum) search, the proximity

search, and the intersection and union of searches are performed in the
same way as described for Approach 2.

Addition (X1 + S, X2 +S, -~----- , Xn + S) -- The requirements placed

on the cell in order to perform the add operation without external logic were
included in Table I. A ternary output signal is required which not only
detects the match-mismatch condition but also differentiates between the
two match combinations. The reason for this requirement can be seen by
examining the Boolean expressions for the sum and carry bits written in a
form to make maximum use of an EXCLUSIVE-OR logic capability,

2i=C X5, +X;8) +C; (X, §, + X, 8)

Civ1 =% 5+ (X §; + X, §) C;

Xi Si+ACi
where A =Xi Si+XiS

i

Note that in addition to the requirement for an EXCLUSIVE-OR function,
there is a need for an AND function in the equation for Ci+1' The assign-
ment of output signals from the cell (p. 3-55) provides the capability needed

12017 IR1

Tem—TTT T eam—T ey Wy P

3-59

by differentiating between the X, Si and ii §i combinations rather than

between Xi §i and ii Si as was needed for the inequality search.

Since no external logic is used, when the quantity A has been generated it
must be stored in a control bit. Two control bits will also be used for the
storage of carry bits — one for the present carry Ci and one for the next

carry C The anticipated allocation of bits within each word is shown

i+1°
below:

WORD j X Z A C.

This makes obvious the need for performing the logic function on two bits

stored within the word rather than between one stored bit and one bit

furnished from the operand register as in all previously discussed operations.

The steps of the algorithm are outlined below:

Logic Operations Write Operations

1. Perform logic on Xi and Si

a) If output is positive, then X, = 1, Si =1 Write A = 0, Ci+1 =1
b) If output is negative, then Xi =0, Si =0 Write A = 0, Ci+1 =0
c) If output is ''no signal' then X,=1,8=0 WriteA=1, C_, =0
or Xi = 0, Si =1
2. Perform logic on Ci and A

a) If output is positive, then Ci =1, A=1 Write Zi = 0, Ci+1 =

b) If output is negative, the Ci =0, A=20 Write Zi =0

c) IHoutputis "nosignal' then C,=1, A=0 Write Z; = 1

orCi=0,A=1

12017 IR1

3-60

In summary it can be seen that two searches (logic operations) and either

three or four writes are required for a single bit add.

Field Addition (Xi + Yi’ X2 + Y2, ------ s Xn + Yn) -- The field add
operation, in which both the X and the Y quantities are stored within the

memory, is carried out in exactly the same way as the previous operation.
It also makes no difference whether the sum Z is stored in a third field of
each word or in place of either X or Y.

Count -- The count is performed in this memory by making use of the
capability of performing a logic operation on two bits stored within each
word of the memory. A single control bit is used toc store the carry C.‘i and

the field X is used to store the counter.

Assuming that the Results Store contains 1's in those positions correspond-

ing to words to be incremented, the algorithm is as follows:
a. Write the contents of the Results Store to control bit 1.
b. Perform logic on Xi and Ci

1) If output is positive, then Xi =1, Ci =1, Write Xi

1l
(=]

[}
[y
-

2) If output is "no signal', then X; =0, C =1 Write X,

orX. =1, C. =0.
i i

c. Repeat step b for successively more significant bits of X.

Thus a single read (logic operation) and three writes are required for each
bit of the counter.

Other processing operations -- Shifting, complementing, the logic sum, and

the logic product are performed is essentially the same manner as described

for Approach 2,

12017 IR1

G . e

3-61

Mechanization Considerations

Requirements -- The device requirements are probably more severe for

this organizational approach than any of the previous ones. Since the logic
function is distributed throughout the memory, the device must have both
logic and storage capabilities. This plus the need for a null match signal
are no different than the requirements of Approach 3. The additional

features needed in this cell are a ternary output, where the assignment of

minterms to output signal varies depending on the operation being performed,

and the capability of performing the logic function on two stored bits as well

as on one stored bit and one furnished from the operand register.

The bit slice writing capability is again quite important as it is in any

approach aimed as processing rather than Just searching.

Applicable Devices -- Surprisingly not all magnetic devices can be im-

mediately ruled out of this organizational approach. The plated wire
memory element, operating in a mode of operation similar to that described
for Approach 3, appears to be a feasible device. The mode of operation
utilized here is signal cancellation of the same general type as previously
described. A set of three of the plated wire storage elements are grouped
together to form what is called a SCANCELL (Signal Cancellation Cell). In
addition to performing a storage function the cell can perform the desired
logic functions required for the equality search, for the inequality search,
and for the arithmetic operations. The way this is done is shown below

where X and Y are stored quantities and S is the contents of the operand
register:

12017 IR1

3-62
OPERAND REGISTER
S} 52 _— - Sm
o B I T
A _":A f—ﬁm-h‘

L\
oo LT INATT /‘”)
\Lailo \l;|x2 \FL'_X'"/'V

The notation implies that two interrogate wires of each cell are energized
at a time — the left two if the bit of the Operand Register contains a 0, and
the right two if it contains a 1. The quantites X, 1, and 0 are stored at

the three intersections of the plated wire and interrogate wire occurring in

each cell as shown above.

Consider first the logic function performed by the cell for an inequality

search. Assuming that the output from each storage element is

' |
u |
| | |
INTERROGATE CURRENT | '
' | |
I I I
| | [
STORED 1 _J_\J'__
. |

STORED O

¢

12017 IR1

3-63

and that adjacent elements are sufficiently uniform so that a 1 and 0
interrogated simultaneously will cancel each other out, the following
output signals are obtained.

Input Combination M
S X
0 0 No signal
0 1 { \ —
1 0 —~ —
1 1 No signal

If we assume that only the first position of the bi-polar output is recognized

k4

this is seen to satisfy the requirements defined for the inequality search.

This same cell can produce the outputs required for an all-parallel equality
search by simply turning on the interrogate current in those bit positions

of the search word containing 1's prior to the search operation. The actual
search is performed by simultaneously turning off interrogate currents
corresponding to 1's in the search word and turning on interrogate currents

corresponding to 0's in the search word. This will produce the following:

Input Combinations Output
S X
0 0 No signal

1 1 No signal

12017 IR1

3-64

Another slight change will provide the logic function required for arithmetic
operation. By simply inverting the contents of the operand register prior
to interrogation and by performing the interrogation as for the inequality

search, the following logic function is performed:

Input Combination Output
5 X
0 0 B
\J’

0 1 No signal

1 0 No signal

1 1 A W
Y

This can be seen to be one of the logic function requirements for arithmetic.
The other one was the generation of the same set of outputs with two stored
quantities, A and C, serving as the inputs. The use of the three storage

locations within the cell to perform this function is as shown below:

12017 IR1

3-65

The logic is performed by simply interrogating pair 1 or pair 2 depending

on which is the appropriate C. The signals generated are

C A Output

0 0 o =
0 1 No signal

1 0 No signal

1 1 h

which is the desired output.

The field add can also be performed,with allocation of cells and storage

elements within the cell as follows:

OPERAND REGISTER

S‘ 52 ______ Sm
sy

B
| | | to
A A SR

Moo ‘éi "1 >< X2 YL> G |A c|+1$-

The Operand Register is initially set to 0 with Sm alternating between
0 and 1 for each bit of addition performed.

12017 IR1

3-66

The SCANCELL provides another unique and useful capability — that of
storing adon't care. With a don't care stored in the cell, regardless of
which pair of storage elements is interrogated, the output of the cell is

"no signal". The storage of a don't care is shown below:

i
P

ly allows the masking out of selected bits on a per

[T

m PR N EP T
11118 L;d.pd.ui.l.l.t)' effe

otivra
word basis, rather than simultaneously for all words as is done by using
the mask register. Such a capability is useful in some types of pattern

recognition problems.

Integrated circuits can be used in this approach much as in Approach 3.
The cell becomes slightly more complicated but otherwise the teéhnique is
very similar. Similar advantages occur for small size memories and
similar power penalties must be paid. Cryotrons can also be used as in
Approach 3 and with similar advantages and problems.

Approach 5 - Intercommunicating Cells

Description

The next step in increased capabilities in an associative memory is to
provide the capability of passing results directly from one cell to the

next. To fully utilize this intercommunicating capability, the cell contains
the logic necessary to perform an add operation. This logic can also

provide the type of output needed for an all-parallel equality search and

12017 IR1

e e e Oy T Y ey ey T gaeEs T Wy Gy ey ey

3-67

the ternary oitput signal needed for tae iniequality search. The full adder
per cell and .ntercommunicating cells seem to go hand in hand as will be

seen in the description of arithmetic capabilities.

A block diagram of this approach is shown in Figure 3-8. The array of
such cells caa1 be written-into and read-frrom in either the bit slice or word
clice modes. Also since each cell his a aumber of d:fferent functions to

perform, corimand information must be distributed to each cell. In all

previous app-oaches the command information was used only on the periphery

of the array since the cell performed the same way fcr all operations. The
list of comminds might include store, reuad, compare, add, shift (right or

ba nr

S

Q

o vidad

-

left), and complement. The commands are assumed
simultaneously to all cells of a column. Of course ary row of cells can be

masked out for a given command.

Each internal cell in the array can communicate directly with its two

nearest neighbors in the row. However, additional intercommunication

can be obtained by using the row (word) output line as an input line to the

cell for certzin commands. For instance consider the requirement to

shift the contents of the right-most column to the left-most column in

Figure 3-8. 'This can be done in one operation by supplying the read com-
'

mand to all culls in the right column and a "'special store'' command to
cells in the leit column, This "special store' commeand will cause the
cells to sture the contents of the row output line. This capability is also

useful tor uiher operations.

Capabilities

Equality, Inequality, and Maximum (minimum) Searches -- Since the
ultimate in speed of performance of these searches was achieved in
previously described approaches, the cellular intercommunications

capability provides no improvements.

12017 IR1

INPUT

3-68

(WORD SLICE)

WORD
SELECTORS

COMMANDS - TO CELLS ON A COLUMN BASIS

INPUT
(81T SLICE) —™

FROM |
RESULTS —9 |
STORE
I
|

)

it e G — ———— ab— a— t—

LHCH

— —— — —

2

ARRAY OF
CELLS

—————— &
L]
i

OUTPUT
(BIT SLICE)

10
Lp WORD
SELECTORS

MISCELLANEOUS
> L EQU

OUTPUT REGISTER
v UTPUT REG

!.,

Figure 3-8,

Intercommunicating Cells

12017 IR1

QUTPUTS

Approach 5 - Associative Memory With

3-69

Proximity Search -- This search mus! agein be carried out by counting

the number of mismatches and perfor:ning a minimum search over the final
counts. Thus the improvement in periorming this operation is directly

proportional to the improvement in counting.

Intersection o Searches -- The intercection of searches is again performed

in the same way as in Approach 2.

Union of Searches -- The capability o: using any column of cells w:thin the

array to rece.ve the results of a search operation on other columns provides

an advantage ror a union of searches operation. This effectively allows
the use of any column as a Results Store and these eliminates the need for
transfer from the results store to the array as was required in all other

approaches.

Addition (X1 + S, X2 + 5, X3 +S, ------ , Xn + S) -- The use of the

intercommunications capability for the add operation is to propagate the

carry signal from the least significant end. The contents S of the operand
register are cimply applied to the array and those words which are active
w:ll proceed to carry out the add by starting at the least significant end.
Each cell, having received the operand bit and the carry-in from the
neighbor to the right, will generate a sum bit Z which will replace the
stored bit X, and will generate a carry bit to be transmitted to the
neighbor on the left. Thus the operation is performed as rapidly as the

carry can propagate.

It can be noted that cellular intercommunications from right to left only is

sufficient for this operation,

12017 IR1

3-70

Field Addition (X1 +Y,, X2 +Yy, - --- - - , Xn + Yn) -- This operation

is carried out by making use of the row (word) output line as an input line

to transfer the ith bit of Y to the cell containing Xi' The add operation,
Xi + Yi_. Zi’ is performed with the sum bit Zi replacing Xi and the carry

Ci+1 being transferred to the cell on the left.

Counting -- Counting is performed in the same way as the centralized add
where the operand will contain a single one in the position corresponding

to the least significant bit of the counter, and 0's elsewhere.

Shifting -- Assuming that the storage element is the equivalent of a double
rank flip-flop, the shift operation is performed by simply providing the
proper shift command to the columns to be shifted. A shift left command,
for example, will cause the cell to output its contents to the cell on its

left and to store the input received from the cell on its right.
Complement -- It is assumed that a cell would have the capability of

complementing its contents on command, thus avoiding the reading and

re-writing required in previous approaches.

Mechanization Considerations

Requirements -- The cells in this approach have the capability of storing

a single bit of data and also include a full adder. The most severe require-

ments, however, is that the cells be able to communicate with each other.

Device Consideratiops -- The addition of intercommunication between cells

to the local logic associative memory constitutes a major change. The bit-
iterative operations that depend on a carry propogation no longer are speed
limited by the bit access time - the speed of the local logic elements is the

prime factor in this case.

12017 IR1

A N U T T Ey Y T T ST B B UEw v Y U = e T

3-71

Integrated circuit elements and cryotrons can again be employed in a
similar manner to that of Approaches 3 and 4. Since the carry propogation
time of cryotron circuitry depend on a time constant rather than on the
switching speed of cascaded elements, the operating speed of a cryotron
associative memory should be about the same as that of an integrated

circuit memory - possibly even greater.

In this approach circuit elements such as the tunnel diode would be capable
of realizing their inherent speed capabilities. This was not possible in the
previous approaches because of the speed limitations of the accessing
circuitry. Many types of logic circuits employing tunnel diodes have been
proposed and at least one of these should be suitable for memory applica-
tions. Attempts to integrate tunnel diodes on monolithic chips have
recently met with some success. This would tend to reduce the high cost
of these devices and possibly increase the uniformity of characteristics.

In either the discrete element or integrated circuit case, the size of a
tunnel diode memory and that of integrated circuit bi-polar transistor
would be restricted to small size units; larger memories would probably

be constructed with integrated circuit field effect transistors or cryotrons.

The major hope for very large (greater than 10, 000 words) associative
memories with local logic and intercommunicating cells lies in the
cryotron. Since the cryotron exhibits true zero resistance in the super-
conducting state and a very low resistance in the normal state, the total
power dissipation is extremely low. The small element size and direct
compatability of memory and logic elements permits extremely complicated
logic structures to be included in each cell. Either of two types of memory
elements can be employed - the cryotron flip-flop or the persistent current
memory element. The latter type is non-volatile in a certain sense; the
memory contents is not destroyed when the logic power fails as long as

the temperature of the memory remains within a certain range. The speed

12017 IR1

CTesw wmw UWN WS TN T BN OB B B U W s

+

3-72

of a cryotron memory should be in the same range as that of magnetic
memories, i.e., read speeds of 0.1 to 5. 0 microseconds depending on
size. Production difficulties have so far prevented the economical
construction of cryogenic memory planes, but the recent application of
integrated circuit construction techniques appears to have solved some
of these problems. Other problem areas involve the interface with the
outside environment and the economics of maintaining cryogenic

temperatures.

SUMMARY OF ORGANIZATIONAL APPROACHES

The associative memory organizational approaches déscribed in this
section are summarized in Table 3-1. Each approach is described in
terms of a set of computation descriptors, in terms of its searching and
processing capabilities, and in terms of the devices suitable for its
mechanization.

The entries used in the capabilities portion of the table are to give an in-
dication of the relative capability of each organizational approach for each
of the searching and processing operations. The larger the number the
faster an operation can be performed. It can be noted that the largest
number is a five, which is the entry for all operations for Approaca 5.
Thus all other associative memories are rated relative to Approach 5.
The device used to mechanize a given approach has no effect on this
number; it is rather effected primarily by the algorithm that must be used

to carry out the operation.

The three entries used in the devices part of the table are an indication of
the size associative memory that could be realized by a given device. A
small memory of 1,000 words or less is designated by an S, a medium
memory from 1,000 to 10,000 words by an M, and a large memory of

more than 10,000 words by an L. The absence of an entry indicates that

12017 IR1

Summar}

Table 3-1,

A 83YdJdeag JO UOr}dasIauU] oo wen |n "
5 Am gayoJeas Jo uoup AN | M | n
8 m yoreag (urw) xepn woume| von o 0
& m. yoaeas £jrrenbaug NN | e [0 w
youxeag Ajrrenby NN~ | B [0 ey
=4 T
A 8 811g a1dIIINIA Kot M| MW
a2 ’ i
S5 g a18urg » »
M5 d
o
&
,mm._m 18ppy [ETI8g »
@ mm & HO 9AISNIOXG Moo
- S
O
= 5
A o &
i
0w u
m u e wopuey e Xkl [l okl
m mm o1104KD w
.
<
A
®) =R {0118 118 MMM MM
M Mm 0118 PIOM M [l]
N
Z
Il w
gl ¥, 32118 1 MMM | x
o mm 3011S pIom MK | "
£
@ 29ppy TIng x
g parmbay puewwo) »
4k " uomoung arqersep] *
8 m ynding Lreuaat,-orfor 1eco] B X
.m indinQ Laeurg -o1307] 1207 P »
8] afeaoig jo 11g atdurg MR [| M »
-] o .0
NN NN MMM «
£
[}
2 0
Nm £ oy 2s | B
0 5] 5} o a o.m.
BE g B, 85 | %
< @ &5 m @&
MO = 8 =g H g = m
5 & s (g2 | edx|ed e
<o g8, (9™ =) g e
GA u.aw. .Mw.. mlw,. .aenw .mo
= §58 |83 ¥ 3<5 |8k g9
o A0g|oad o 40,4 &
2w a5 oS3 | afg @ Q
Suld | sk nnolan0| ag
S« <kr |<BR <38 <8

2-73-/

Media

Cyclic Access

T918133Y 3JTUS WT UYL
aAeMm uysig

suw] AereQ

a9ys18ay S LAA

aays1day Jus
1moJar) pareadajur

3-73

Read Only
Elements

apo1q

810D H

Buridno) aarjonpug
ang

M ML ML S

DEVICES

Hysteresis Elements

uogjoaIaq
CRISIREYEIREEY: ¢
8013303130419,

sared aojroede) aporq
80300 TEISN

Wl UYL Xn{-pasord
wrd ungl xngy-uado
sI0XN{IsuRL],

xerg

uoJt-STIFEM

FEELIEH SR LY

S ML ML
S ML ML

ML ML ML ML

ML ML ML ML

M S ML ML ML
ML ML ML ML ML ML ML M S ML ML ML

ML ML MLML ML ML ML M S ML ML ML

ML ML ML ML ML ML ML

7 of Crganizational Approaches

83400 TEPIOJOL m m
3
¢ sapoy] Tauung, nunwn
Q
m .Dm. guodj041)) »
@ .
g
& saporq fauung, 23717 7] 7]
g1e .])
.m m 1093JH PTatd W -UTyL 5 5
<@ LSOW = s
-~
& Jerodig SIYIITOUON 2] 7]
7]
m Am Acx + o-e- mx + wc uoTjRIIWING 0w n)
m.m PPV utod Buneorg - ~ ~)
nwmmu. yoaeag £jrwuixoayd - n
jonpoad pue wng o180 — -))
" 0y juswardwo) — [}
m w8 s R R "
o % = unon — SIS 1)
B ou
m mm Cx +"%-- Bx 4 I Tx 4 Ty ppy N) ®
Sl ©+"%-- s+ % g+ 'x)ppy I N "

M ML ML M

12017-IR1

3-73-

ML M ML ML
ML M ML ML
ML M ML ML
ML M ML ML

3-74

a device would probably not be considered for that organizational approach.
For instance the monolithic bipolar integrated circuit is not considered for
the minimum associative memory, not because it couldn't satisfy the re-
quirements, but rather because it fits the requirements of an associative
memory employing local logic much better. It can also be noted that not all
the devices described in the survey of Appendix B are included. Déwvices were
excluded from this table for one of two reasons—the device was given a con-
fidence level of 6, 7, or 8 in the survey, or the device did not appear to com-
pare favorably with other available devices for any of the organizational

approaches.

12017 IR1

3-75

BIBLIOGRAPHY FOR SECTION III

Magnetic Associative Memories

J.R. Kiseda, H.E. Petersen, W.C. Seelbach, and M. Teig, "A Magnetic
Associative Memory," IBM J. Res. Dev, Vol. 5, pp. 106 - 121; April
1961.

R.R. Lussier and R. P. Schneider, '"All-Magnetic Content Addressed
Memory, ' Electronic Industries, p. 92; March, 1963.

C.A. Rowland and W. O Berge, "A 300 Nanosecond Search Memory, "
Proc. Fall Joint Computer Conf,, Vol 24, pp. 59 - 65; November 1963.

A.D. Robbi and R. Ricci, "Transfluxor Content-Addressable Memory, "
Proc. Internat'l Conf. on Nonlinear Magnetics, ; April, 1964.

J. McTeer, J. Capobianco, R. L. Koppel, "Associative Memory System
Implementation and Characteristics (Biax), "Proceedings of Fall Joint

Computer Conference, 1964.

Capt. Joseph Lucas, (USAF) '""Development of a 24 Thousand Bit Associ-
ative Memory Utilizing Passive Detection, ' 1964.

Cryogenic Associative Memories

A.E. Slade and H. O. McMahon, "A Cryotron Catalog Memory System,"
Proc. Eastern Joint Computer Conf ., pp. 115-119; December, 1956.

R. R. Seeber, "Cryogenic Associative Memory, ''presented at the
National Conference of the Association for Computing Machinery,
Milwaukee, Wisc.; August, 1960.

12017-IR1

|

3-76

A.E. Slade and C.R. Smallman, "Thin-Film Cryotron Cryotron Cata-
log Memory," IEEE Trans. on Automatic Control, Vol. 13, pp. 48-50;
August, 1960

H. T. Mann and J. L. Rogers, ""A Cryogenic 'Between-Limits' Associ-
ative Mernory," Proc. Nat'l Aerospace Electronics Conv., 359; May
1962.

V. L. Newhouse and R. E. Fruin, ""A Cryogenic Data Addressed Memory, "
Proc. Spring Joint Computer Conf., Vol. 21 pp. 89-93; May, 1962,

P.M. Davies, "A Superconductive Associative Memory," Proc. Spring
Joint Computer Conf., Vol. 21, pp. 79-88, May, 1962,

R.W. Ahrons and L. L. Burns, Jr., ''Superconductive Memories,'"
Computer Design, Vol. 1, pp. 12-19; January, 1964.

Richard Ahrons, "Superconductive Associative Memories,' RCA Review
Sept. 1963.

J. P. Pritchard, Jr. and L. D. Wald, '"Design of a Fully Associative
Crygenic Data Processor'', Proc. International Conf. on Nonlinear
Magnetics, April, 1964.

Semiconductor Associative Memories

R. C. Corbell, (UCLA) "A Tunnel Diode Associative Memory," M. S.
Thesis, University of California at Los Angeles; 1962.

M. H. Lewin, H.R. Beelitz, and J. A. Rajchman, "Fixed Associative
Memory Using Evaporated Organic Diode Arrays,' Proc. Fall Joint
Computer Conf., Vol. 24, pp. 101-106; November 1963.

12017 IR1

- " B e

T T T T B . T

3-77

E.S. Lee, "Associative Techniques with Complementing Flip- Flops, "
Proc, Spring Joint Computer Conf., Vol. 23, p. 381; May, 1963.

E.S. Lee, " Solid State Associative Cells,' 'Pacific Computer
Conference, 1963.

Associative Memory Systems

E. H Frei and J. Goldberg, "A Method for Resolving Multiple Re-
sponse in a Parallel Search File," IRE Trans. on Electronic Computers
Vol. EC-10, pp. 718-722; December 1961.

C.Y. Lee and M. C. Paull, "A Content Addressable Distributed Logic
Memory with Applications to Information Retrieval, " Proc. IEEE, Vol.
91, pp. 924-932; June, 1963.

Collection of "Technical Notes on Goodyear Associative Memory,"
Goodyear Aircraft Corp., Akron, Ohio, Report No. GER 10857,
October, 1962,

G. T. Tuttle, "How to Quiz a Whole Memory at Once, "' Electronics,
Vol. 36, pp. 43-46; November 15, 1963.

H. Weinstein, "Proposals for Ordered Sequential Detection of Simulta-
neous Multiple Responses, "' IEEE Trans. Electronic Computers
(correspondence), Vol. EC-12, pp. 564-567; October, 1963.

R. H. Fuller, (UCLA) "Content Addressable Memory Systems, "
University of California at Los Angeles, DDC AD 417644; June, 1963.

A. Kaplan, "A Search Memory Subsystem for a General-Purpose Com-
puter, "' Proc. Fall Joint Computer Conf., Vol. 24, pp. 193-200;
November, 1963.

12017 IR1

T T U T T T

10.

3-178

"Summary of Investigation on Associative Memories, '' Contract 4068
(00) ONR, 15 January 1964.

Yoahan Chu, "A Destruction Readout Associative Memory," IEEE

Transactions on Electronic Computers, August 1965.

L.R. Johnson and M. H. McAndrew ""On Ordered Retrieval from an
Associative Memory, " IBM J. Res. Div., Vol. 8, pp. 189-193; April
1964.

Associative Memory Algorithms

R. R. Seeber, "Associative Self-Sorting Memory, "' Proc. Eastern
Joint Computer Conf., Vol. 18, pp. 178-187; December, 1960.

R.R. Seeber and A. B. Lindquist, "Associative Memory with ordered
Retrieval, ' IBM J. Res. and Dev., Vol. 6, pp. 126-136; January, 1962.

M. H. Lewin, ''Retrieval of Ordered Lists from a Content Addressed
Memory, "' RCA Review, Vol. 23, pp. 215-229; June, 1962.

A.D. Falkoff, ""Algorithms for Parallel - Search Memories, " J. ACM,
Vol. 9, pp. 488-511; October, 1962.

G. Estrin and R. Fuller, (UCLA) "Algorithms for Content-Addressable

Memories, "' Proc. Pacific Computer Conf.; March, 1963.

Rogers and Wolinsky, ''Associative Memory Algorithms and Their
Cryogenic Implementation, " AD 429521, December, 1963.

12017 IR1

B - N _ T T Wew W T T e L L] L] |
TN T -

3-179

Applications of Associative Memories

R. R. Seeber, ''Symbol Manipulation with an Associative Memory, "
Preprints Nat'l Conf. Association for Computing Machinery, pp. 5B-4
(1) through 5B-4 (4); September, 1961.

L. Bloom, C Cohen, and S. Porter, "Considerations in the Design of
a Computer with a High Logic -to-Memory Speed Ratio, " Gigacycle
Computing Systems, AIEE Spec. Pub. S-136, pp. 53-63; 1962.

E.C. Joseph and A. Kaplan, "Target Track Correlation with a Search
Memory, " Proc. 6th Nat'l. Conv. on Military Electronics, p. 255;
June, 1962, ’

T. Singer and P. Schupp, "Associative Memory Computers from the
Programming Point of View, " MITRE Corp., Bedford, Mass., Rept.
No. W-5492; August, 1963.

R. H. Fuller and G. Estrin, (UCLA) "Some Applications for Content-
Addressable Memories, " Proc. Fall Joint Computer Conf., Vol. 24,
Pp. 495-508; November, 1963.

R.R. Seeber and A. B. Lindquist "Associative Logic for Highly Paral-

lel Systems, "' Proc. Fall Joint Computer Conf. , Vol. 24, pp. 489-493;
November, 1963.

M. E. Conway, USAF (ESD) ""A Multiporcessor System Design, "' Proc,
Fall Joint Computer Conf., Vol. 24, pp. 139-146; November, 1963.

"The Application of Associative Memories to Control Functions in a
Multi-Processor Computer System, " pp. 4-39 to 4-66, MILDATA

Quarterly Progress Report No. 3 by Honeywell, Contract No. DA-36-
039-AMC-03275 (E), June, 1964.

12017 IR1

T T T T O .

3-80

Yaohan Chu, "Application of Content-Addressed Memory for Dynamics
Storage Allocation, " RCA Review, March, 1965,

Associative Processors

R. F. Rosin (University of Michigan),""An Organization of an Associa-
tive Cryogenic Computer, "' Proc. Spring Joint Computer Conf., Vol.
21, pp. 203-209; May, 1962.

P. M Davies '"Design for an Associative Computer, " Proc. Pacific Com-
puter Conf., p. 109;, March, 1963.

J. Bernard F. Behnek, A. Lindquist and R. Seeber, " Structure of a
Cryogenic Associative Processor, "' Proceedings of IEEE, October,
1964.

J. P. Pritchard, Jr. and L.D. Wald,''Design of a Fully Associative
Cryogenic Data Processor,'' Proc. Internat'l Conf. on Non-Linear
Magnetics, pp. 251-254; April, 1964,

Ewing, P. Davies, 'An Associative Processor, ' Proceedings of the Fall

Joint Computer Conference, 1964,

R. M. Bird and R.H. Fuller,"An Associative Parallel Processor with
Application to Picture Processing, ' Proceeding of the Fall Joint Com-

puter Conference, pp. 105, November, 1965.

12017 IR1

3-81

REFERENCES FOR SECTION III

1. A.E. Slade and H. O. McMahon, "A Cryotron Catalog Memory System,"
Proc. Eastern Joint Computer Conference, pp. 115-119, December,
19586,

2. "Summary of Investigation on Associative Memories," Computer
Command and Control Company, Contract No. 4068 (00) ONR, 15
January, 1964,

3. "Collection of Technical.Notes on Goodyear Associative Memory, "
Goodyear Aircraft Corp., Akron, Ohio, Report No. GER 10857,

October, 1962.

4. R.H. Fuller, "Content Addressable Memory Systems," University of
California at Los Angeles, DDC AD 417644, June, 1963.

12017 IR1

4-1

SECTION 1V

INVESTIGATION OF SPECIAL APPLICATIONS AND
APPROACHES

The computation requirements for unmanned space vehicles were summarized
in Section II. A number of conclusions were drawn which point to problem

areas where associative memories can be expected to be applicable. Taking

T T T s WS . .

these conclusions into consideration, a number of subtasks have been
identified and are listed below:

1. Investigate the use of an associative memory for incremental
computation such as is required in navigation and control functions.
2. Consider the use of associative techniques for compression of

pictures. A two-level associative memory looks promising for
this task.

3. Investigate associative techniques to provide an adaptive sampling
capability for both analog and digital quantities.

4. Consider the organization of an associative memory aimed at the

sum of products computation,

5. Investigate the use of associative techniques to handle (executive)
control functions in a multi-processor system. In this case it is
assumed that the on-board computer facility is a multi-processor

system, which is reasonable in view of the reliability requirements.

[}

Consider methods of making an associative memory ultra-reliable.

Only items 1 and 6 have been examined to any extent at this time. Discussion
of these two subtasks follows:

12017 IR1

4-2

l i

|

I AN ASSOCIATIVE MEMORY FOR INCREMENTAL COMPUTATION

i It has been assumed that a strapped down attitude reference system employ-
ing a set of laser gyros would be used as the basis for the navigation and
control system for the lander. Most of the computations that must be per-

l formed by this system are of the incremental type, many of which must be
performed at a high rate. Fortunately, most of these computations can be

I done in parallel rather than sequentially and it is therefore practical to

construct a series-parallel special purpose incremental computer to do

this job.

It may however be desirable to use an associative memory tc do these
computations. First of all, although the associative processor would
probably contain more elements than an incremental computer designed to
do the same job, the nature of the associative processor - a large network
of identical elements - may make a low cost batch fabrication process
possible. In that case the associative memory may be less expensive than
the incremental computer. Furthermore, if there is to be an associative
memory in the lander for the purpose of processing data obtained during
the performance of scientific experiments after the landing phase, it would

be available for the navigation and control function during the landing phase.

Incremental computation is usually performed by suitably interconnecting a
number of digital integrators. Each integrator computes according to the
formula AZ = k Y AX which when summed forms ZAZ =2Z =Kk ZY A X

This sum is an approximation to the integral Z = k | ydx.

The digital integrator consists of three major parts - a Y register connected
as a counter, an R register and adder-subtracter connected as an accumulator,
) and the necessary logic for generating the A Z and controlling the counter and
accumulator from the AX and AY inputs. Figure 4-1 is a block diagram of a

typical integrator configuration. Although binary (two valued) increments are

U N O eweE - @

L] L] [] L [| [. N PN N T =S s

4-3
AZ . kYAX
T Az
L LoGic je— R REGISTER
A/S aXx
Y REGISTER

CTR. “
LOGIC ay

Figure 4-1. Block Diagram of an Integrator for an
Incremental Computer

12017 IR1

4-4

sometimes used, ternary (3 valued) increments are much more common
and will be assumed in this application. The three possible incremental
values are +1, 0, and -1. Means must be provided to add several AY
increments into the contents of the Y register. This can be done either
sequentially or in parallel. Addition of a single increment to the Y register
requires counting up by 1, no change, or counting down by 1., Addition of
more than one increment may require several counts. The R register is
updated by either adding Y to R, leaving the contents of R unchanged, or
subtracting Y from R depending on the value of AX. If this is done after
the Y register is updated with the most recent AY, the new value of Y is
used; if it is done before the Y register is updated, the old value of Y is
being employed. The A Z increment consists merely of the overflow or
output carry (or borrow) of the R register. It is sensed after each

R £ Y operation and then encoded and stored for later use as either a A X
or AY input to other integrators.

Scaling consists of determining the proper values for the constant k asso-
ciated with each integrator and modifying the integrator such that the output
AZ = kY AX. If k can be made equal to a power of two, the scaling process
can be implemented by selecting the proper position in the X register in
which to add the AY increment. In the few cases in which k is not equal to
a power of two a separate integrator is used as a constant multiplier. A
constant k is placed in the Y register and the AY increment is connected to
the AX input resulting in an output of-AZ = k AY.

An incremental computer can either be programmed to approximate the

solution of a differential equation or, as is more common in present day

[practice, to solve a difference equation which may in some cases approxi-
mate a differential equation. In either case, the programming is accomplished

| by connecting the A Z outputs to the proper AX and AY inputs such that the

‘ resulting integrator configuration is constrained to solve the proper equation.

12017 IR1

Two approaches to performing incremental computation have been examined.
Either word slice or bit slice processing may be used and each method has
unique advantages and disadvantages. The bit slice processing procedure

will be described first.

A bit slice associative memory is arranged such that a given bit of all the
words in the memory is processed at a particular time. The proposed word
structure for a bit slice processor which is to be used for incremental com-
putation is shown in Figure 4-2. There are a total of eight different fields
in the word. Four of these fields are used to store the Y and R registers
and the AX and AY increments. Since it is generally required that an
integrator accept several AY inputs,provisions for these multiple AY

inputs are included in the AY field. As previously stated ternary increments
are used thus requiring two bits for the storage of each A X and each AY.

The following coding scheme is proposed for the two sets of increments.

ab -y
00 0
01 +1
10 -1
11 not used

This method of scaling facilitates searching first for positive increments

and then for negative increments or vice versa. It also facilitates modifica-
tion of the processing order by the sign of the increment as will be described
later,

The four remaining fields are somewhat unconventional and require a more
detailed explanation of their purposes. The scaling control bits are used for
scaling the various integrators. This is done by first searching the first bit
location in the field for ones and then adding or subtracting an increment to
all of the Y words which have a one in this position. If there is more than

12017 IR1

uonyendwo) [BlUstIaadu] . 104 pas(AJowa N
SANBIDOSSY 221[S 11 ®© J04 juswadueaay Agowapy ‘2-% 9andry

4-6

\[/\'ll\.{{ {(Il)\] 7\ —~
y xv Ly Uy TOUNOD 3300

ONIYIS ¥055300¥d
YOLV¥OIUNI

118 NOILVDI4IQOW ¥3030 ONISS:D0¥d ¥31$193Y

118 NOWL VDIJIaOwW ¥3030 ONISSIDO'Yd YOLVIOIUNI

. e dussst Sl sesth

12017 IR1

ponp— Pl proe—s s
[B T W YN T b A ~

one AY at any of these positions they must each be added sequentially. Then
the second scaling bit location is searched for ones and the process is repeated
until all of the scaling bits and AY bits have been searched. Notice that con-
siderable time can be saved in this type of memory operation if a very rapid
parallel search is available and if its results can be used to eliminate the
succeeding steps whenever there are no matches in the search. Thus another
desirable feature would be a rapid, parallel 'no match" indicator which would

sense this condition and immediately cause the processor to search the next
bit location.

In some algorithms certain sets of integrators must be processed sequentially
because of the nature of the difference equation being solved. The order of
processing depends on whether the particular part of the equation being con-
sidered calls for the use of the old value of Y or the new value of Y. The old
value of Y corresponds to the contents of a Y register that has not been up-
dated during the present iteration period,while the new value of Y corresponds
to the contents of a Y register that has been updated. The natural method of
operation of this type of associative memory results in the consistant use of
the old value of Y since the integrators are processed in parallel. Therefore,
in order to use the new value of Y it is necessary to set aside one of the
memory word fields to establish iie oider of integrators that must be pro-

i

cessed sequentially. These bits are so indicated in Figure 4-2,

It is sometimes necessary to modify the processing order of sequentially
processed integrators depending on the sign of the AX increment, or other
criterion. This modification is obtained by means of logical operations
performed on the processing order bits and on the AX bits. A single

control bit has been added for this purpose. It permits a specified criterion
to control the processing order. If more than one criterion is to be used
additional control bits must be added. Some algorithms also require that

the order of processing the Y and R registers be interchanged. An additional
control bit has also been added for this purpose.

12017 IR1

T W W ey T T e e ey

4-8

Many problems have been encountered in this attempt to use an associative
memory to perform incremental computations. Up to this point all of these
problems have been solved by the addition of extra bits to the memory word.
Some of these bits contain data, others contain control information. One
additional problem remains, however, that is not as easily solved. This is
the problem of programming the processor to solve different sets of
difference equations. Programming an incremental computer consists of
merely directinz the AZ overflows which are sensed at the end of each Y + R
addition and stored at the output of the memory (or internally if desired) to
the proper A X and AY locations in other words of the memory. Of course
if several AZ increments are to become A Y increments for a given word
they must each be directed to a separate A Y storage location with the
word., It has not been found possible to solve this problem by the addition
of bits to the memory word. In fact, the only solution that is apparent at
the present time consists of an external logic network which could be
modified by a plug board arrangement to change the programming of the
associative memory. One example of how this might be done is sketched

in Figure 4-3.

The actual computation rate of an associative memory programmed to
pertorm incremeutal computations depends on the search and write speeds
of the processor and on the method of performing the computations. If it
is assumed that a write operation requires approximately twice as much
time as a search operation, a search speed in the range of 100 to 200
nanoseconds will probably be required to do the navigation and control
computations. This figure was obtained by estimating the number of
search operations (approximately 1700), and then calculating the required
search speed for an assumed computation iteration rate of 3000 to 6000
per second. The resulting search speed appears to be within the range

obtainable from a number of potentially useable memory elements.

12017 IR1

uonyendwo) [ejUs WaIdU] J0 4 pas() AIowa A QATIBIDOSSY
8011S 319 ® J0y juswadueaay Surwweadoag pieoqdnid ‘g-§ a2an8r1g

Q¥IvOEONI4
u
M
]
|
|
|
|
|
|
o |
< SLINDWID 1LIdM |
30115 118 OL I
. |
|
[
——0 y— |
——0)
——o0 ATIIQJ €
]
——0 > z
—r— O - M
-1+ O— ﬁ
_>>
S o OIS
20 e XV S1INS3Y

12017 IR1

4-10

The previous discussion has pertained to a processor organization in which
bit slice processing is employed. It is also possible to arrange the words

in the memory in such a way that word slice processing is employed. The
memory structure for an organization of this type is diagramed in Figure 4-4.
In this organization integrator processing is inherently sequential while
operations on a given word or pair of words are performed in a parallel-
by-bit manner. Assuming a sequential processing of the integrators, in the
order of their location in the memory, it is possible to use either the old
value or the new value of Y by proper location of the integrators and by
proper programming methods. It is difficult however, to vary the order

of processing depending on the sign of one of the input or output increments
or some other parameter. This would either require some complicated
control logic in the sequencing and programming sections of the processor
or else it would require the storage of the data and control bits for more than

one integrator in a given column of the memory.

Updating of the Y register is performed by reading out the contents of the
register along with the associated A Y increments and the scaling bits, de-
coding the scaling bits, and then adding the A Y increments to the Y register,
one at a time, by means of a parallel adder. The R register is updated by
reading oui ihe R aind Y registers and the A X increment, performing the
required addition or subtraction, and rewriting the new contents of the R
register. Programming is also a severe problem with this type of memory
organization unless a two dimensional search is available. If this feature

is available a set of rows could be set aside in the memory for programming
purposes, two for each of the integrators. After a particular integrator is
processed the corresponding programming row could be searched and the

A Z could be written into each of the A Y locations corresponding to a 1 in
the first of the rows and into each of the A X locations corresponding to a 1 in
the second of the two rows. A serious problem arises in that it would be
difficult to know which of the A Y locations to write into since one must be able
to distinguish between an old A Y which is to be replaced and a newer A Y

which was previously written during the same iteration of the memory.

12017 IR1

k———-

o
PN NS S P e T

- - - -

I g et
R

CONTROL

SCALING '

\

Figure 4-4. Memory Arrangement For a Word Slice
Associative Memory Used For Incremental
Computation

12017 IR1

4-12

Each of these two methods of performing incremental computations in an
associative processor has particular advantages and disadvantages. The
first mechanization is most suitable for a computation that requires a
large number of integrators, since the integrators are processed in more
or less a parallel fashion while the bits are processed sequentially. Most
of the necessary control functions can be readily performed by means of
searches on special fields contained within the word. Programming,
however, presents a problem and it appears that an external plugboard
programming unit may be required. The second organization is more
suitable for a computation requiring only a small number of integrators

since the integrators are processed sequentially while operations on a

s8]
-

4

given word are performed in parallel. All of the necessary control
functions except for variation in the processing order and programming
can be readily performed by means of special fields in the memory word.
It might be possible to devise reasonable solutions to both of these
problems if both a horizontal and a vertical search instruction were
available. This brief investigation of the capabilities of an associative
memory as an incremental computer has resulted in quite reasonable
solutions to most of the problems involved in the outlook is certainly
optimistic. It is expected that further investigation of the problems could

result in feasible solutions to the remaining problems.

SOME CONSIDERATIONS IN THE ORGANIZATION OF AN ULTRA-RELIABLE
ASSOCIATIVE MEMORY

An ultra-reliable associative memory is defined as one which can detect a
failure and continue operating (possibly with reduced capabilities). In the

event of a failure, the loss of the information in the failed cell or failed
word is allowed.

RN N

When considering the problem of error detection, various approaches to
organization of an associate processor can be divided into two groups —
those without logic in the cell, and those with the logic distributed

12017 IR1

4-13

throughout the memory. The techniques available for error detection are quite
different in these two cases.

Consider first the associative memory with logic distributed throughout the array.
Since the logic functions are performed locally, the error detection function must
be distributed. Coding techniques can in general be excluded because of the local
logic and the difficulty when masking is used. Duplex or majority logic at each
cell are‘examples of methods that could be used. This would have an appreciable

effect on the cost and power requirements.

In the type of associative memory without distributed logic, the problem of
detecting errors becomes a less formidable one, Since all the masking and
processing is performed external to the array, the array itself can be checked
with a simple parity or with a slightly more complex residue check code. The
logic external to the array can then be made ultra-reliable by using redundancy
techniques. Since this redundancy is required only on a per word basis rather
than a per cell basis, the effect in terms of cost and power would probably not be
prohibitive.

Once a fault has been detected, some provision must be made for by-passing it.

A fault along a word line would not appear to be a serious probiem; that word musi
simply be excluded from search operations and must be avoided when loading the
memory. However a fault along a bit line is a potentially more serious problem.
One organizational feature that is worthwhile considering is a bi-directional
capability. In this case operations can be carried out either along columns or
row. Thus words can be stored either in the column or the rows of the array. If
a fault were to occur such that one bit in every word could not operate properly,
the entire contents of the array could be rotated 90° so that the fault effects a
single word. This would imply that the memory is square (the number of bits per
word equals the number of vords) which would severely limit its application,

Thus bi-directionality of operations should be considered a worthwhile feature for
reliability only in special situations.

12017 IRl

4-14

These are some initial thoughts on the subject of reliable associative memories.

Some additional effort is planned in the reinainder of taue study.

5-1

SECTION V

SUMMARY OF RESULTS AND
WORK TO BE DONE

The results of each of the tasks of the program have been described in previous
sections. A brief summary of these results is given here and tasks remaining to

be done are identified.

The computations required on an unmanned space vehicle were defined in terms
of a set of computation descriptors. The most frequently used computation
descriptor was the sum of products. The organization of an associative memory

aimed at this computation is planned.

A number of general observations were made regarding the space exploration
problem. First, there is a need for ada;ptive sampling of the scientific sensors
as well as performance sensors. The capabilities of an associative memory fit

this requirement sufficiently well to Justify further investigation,

One of the most severe requirements on the on-board computing facility is for
data compression. The capability of collecting large amounts of data along with
a limited communications capability make it necessary to consider encoding and
filtering techniques to assure that only pertinent data is sent. Compression of
TV or radar pictures appears to be a particulariy fruitful area and has been

selected for further investigation.

Another type of requirement is that of incremental computation. This is used
primarily in navigation and control of a lander vehicle. It has been shown that

an associative memory can handle the requirement. The significant point of this
result is that an associative memory, justified mainly for some other function,
could handle this function during its relatively short duration and thus eliminate the

special purpose hardware which would normally be furnished.

Another somewhat indirect observation concerning the on-board computing facility

is the reliability problem. This has generated two subtasks, one of which is

12017 IR1

5-2

partially completed. First, to achieve the ultra-reliability that the computing
facility must have, it is assumed that it will be a multi-processor system. In
such a system associative memories have been shown to be applicable to a number
of the control functions. Therefore, this application will be given some attention.
Also, the possibility of a centralized associative memory in the system places
very stringent reliability requirements on it. Hence, some thought has been given

to the organization of an ultra-reliable associative memory.

The emphasis i‘n the remainder of the study will be on the special applications
identified above. Also to be done, however, are two other tasks -- Task 4 -
Evaluation of Associative Techniques for Space Exploration Computation, and
Task 5 - Device Recommendations (see page 1-1). The first of these wili use the
outputs of Task 2 - the Survey of Organizational Approaches and Task 3 - The
Examination of Special Applications and Approaches. Each approach will be
evaluated in terms of its effectiveness on the computation requirements defined
in Task 1. The final task, the device recommendations, will be made by making
use of the resulis of the device survey. Device recommendations will be made by
considering the results of the evaluation and the status or confidence level of
applicable devices. It is expected that a small number of devices can be singled

out as being particularily bromising for space exploration requirements.

12017 IR1

